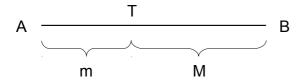
Goldenes Rechteck und Goldene Spirale

Arno Fehringer

Januar 2015

Goldenes Rechteck und Goldene Spirale

Der Goldene Schnitt



Eine Strecke |AB| sei durch einen Punkt T in unterschiedlich lange Strecken m < M aufgeteilt, so dass gelte:

$$\frac{M+m}{M} \; = \; \frac{M}{m} \quad .$$

Die Gesamtstrecke soll sich also zur größeren Teilstrecke gleich verhalten wie die größere zur kleineren.

Die folgende Umformung führt auf eine quadratische Gleichung mit der Lösung $\frac{M}{m}=\frac{1+\sqrt{5}}{2}\approx 1,618...$:

$$\frac{M+m}{M} = \frac{M}{m}$$

$$1 + \frac{m}{M} = \frac{M}{m}$$

$$1 + \frac{1}{\frac{M}{m}} = \frac{M}{m}$$

$$\frac{M}{m} + 1 = \left(\frac{M}{m}\right)^2$$

$$\left(\frac{M}{m}\right)^2 \,-\, \frac{M}{m} \,-\, 1 \,=\, 0$$

$$\frac{M}{m} = \frac{1}{2} \pm \sqrt{\left(\frac{-1}{2}\right)^2 + 1}$$

$$\frac{M}{m} \; = \; \frac{1 \; \pm \; \sqrt{5}}{2}$$

Hier ist nur die positive Lösung brauchbar:

$$\boxed{\frac{M}{m} = \frac{1+\sqrt{5}}{2} \approx 1,618...} \quad .$$

Definition:

Die Zahl $\frac{1+\sqrt{5}}{2}$ heißt die **Zahl des Goldenen Schnitts** oder einfach **Goldener Schnitt** :

$$\Phi := \frac{1+\sqrt{5}}{2} \approx 1,618...$$

Luca Pacioli (1445 – 1517; 72) bezeichnete diese Verhältniszahl auch als **Divina Proportione** (= Göttliche Proportion) und schrieb darüber ein Buch mit dem gleichnamigen Titel.

Portrait Luca Paciolis, gemalt von Jacopo Barbari, 1495

Die Zahl Φ erfüllt die Gleichung $\Phi^2 = \Phi + 1$ und als Konsequenz:

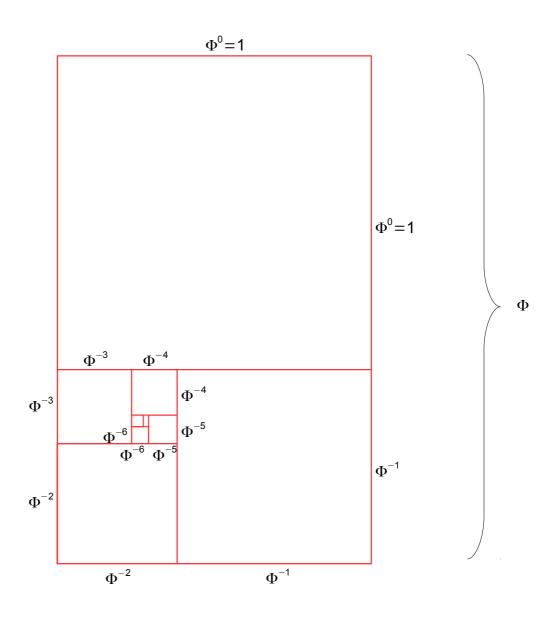
$$\Phi^{n+2} = \Phi^{n+1} + \Phi^n$$
 für alle $n \ge 0$.

Das Goldene Rechteck

Beim Goldenen Rechteck ist das Verhältnis von Länge zur Breite gleich Φ . Im Folgenden sei die Länge gleich Φ und die Breite gleich $\Phi^0=1$.

Unterteilt man dieses Rechteck in eine Quadrat der Seitenlänge $\Phi^0=1$, so verbleibt ein kleineres Goldenes Rechteck mit der Länge Φ^0 =1 und der Breite Φ^{-1} . Das liegt an der quadratischen Gleichung für Φ :

$$\Phi^2 = \Phi + 1$$
 bzw. $\Phi = 1 + \Phi^{-1}$.



Führt man diese Unterteilungen in einer speziellen Weise fort, so erhält man eine "Spirale mit immer kleiner werdenden Quadraten".

Z(x;y) dieser "Spirale" hat die folgenden Koordinaten bezogen auf die Das Zentrum linke untere Ecke des Goldenen Rechtecks, welche sich als Grenzwerte von geometrischen Reihen ergeben:

$$x = \Phi^{-3} + \Phi^{-7} + \Phi^{-11} + \Phi^{-15} + \dots$$

$$x = \Phi^{-3} (1 + \Phi^{-4} + \Phi^{-8} + \Phi^{-12} + \dots)$$

$$x = \Phi^{-3} \cdot \frac{1}{1 - \Phi^{-4}} = \Phi^{-3} \cdot \frac{\Phi^{4}}{\Phi^{4} - 1}$$

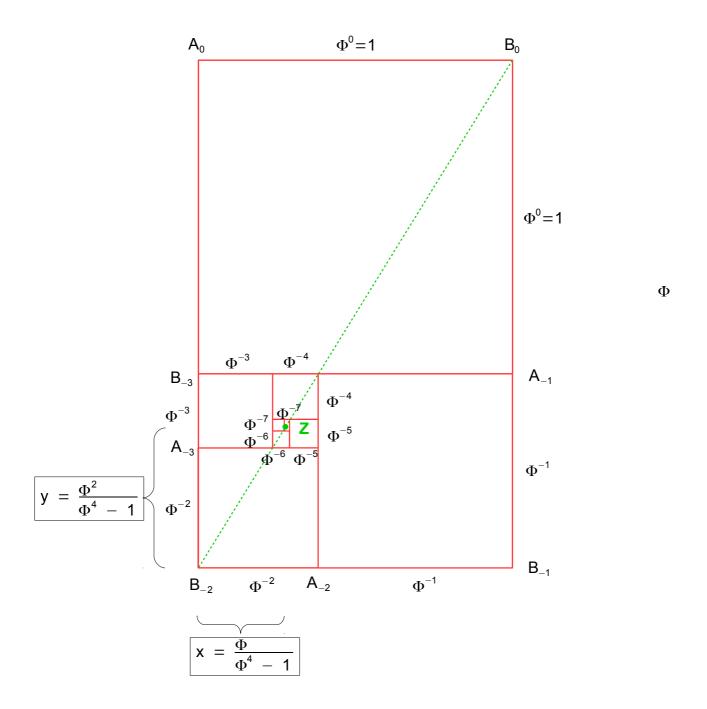
$$x = \frac{\Phi}{\Phi^{4} - 1}$$

$$y = \Phi^{-2} + \Phi^{-6} + \Phi^{-10} + \Phi^{-14} + \dots$$

$$y = \Phi^{-2} (1 + \Phi^{-4} + \Phi^{-8} + \Phi^{-12} + \dots)$$

$$y = \Phi^{-2} \cdot \frac{1}{1 - \Phi^{-4}} = \Phi^{-2} \cdot \frac{\Phi^{4}}{\Phi^{4} - 1}$$

$$y = \frac{\Phi^{2}}{\Phi^{4} - 1}$$



Da die Steigungen der Strecken $\overline{B}_{-2}\overline{Z}$, $\overline{Z}\overline{B}_{0}$ jeweils die Steigungen Φ haben, liegen die drei Punkte $B_{-2}(0;0)$, Z(x;y) , $B_{0}(1;\Phi)$ auf einer geraden Linie:

Steigung der Strecke
$$\overline{B}_{-2}\overline{Z}$$
 : $\frac{\underline{\Phi}^2}{\underline{\Phi}^4-1}$ = Φ

Steigung der Strecke
$$\overline{ZB_0}$$
:
$$\frac{\Phi - \frac{\Phi^2}{\Phi^4 - 1}}{1 - \frac{\Phi}{\Phi^4 - 1}} = \frac{\Phi \left(1 - \frac{\Phi}{\Phi^4 - 1}\right)}{1 - \frac{\Phi}{\Phi^4 - 1}} = \Phi$$

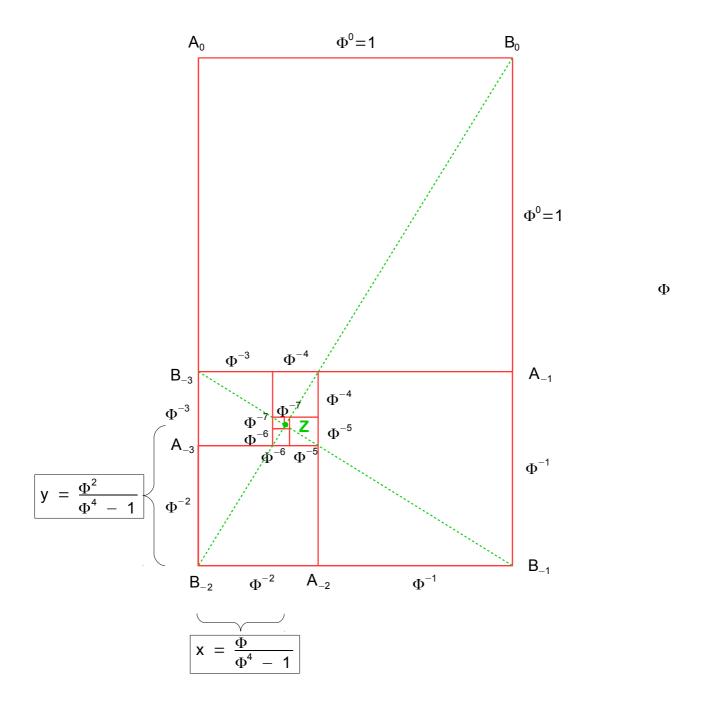
Analog zeigt man, dass auch die Punkte B_{-3} , Z, B_{-1} auf einer geraden Linie liegen:

Steigung der Strecke $\overline{B}_{-3}Z$:

$$\frac{\frac{\Phi^2}{\Phi^4 - 1} - \Phi^{-1}}{\frac{\Phi}{\Phi^4 - 1}} = \Phi - \frac{\Phi^{-1}}{\frac{\Phi}{\Phi^4 - 1}} = \Phi - \frac{\Phi^{-1}(\Phi^4 - 1)}{\Phi} = \Phi - \frac{\Phi^4 - 1}{\Phi^2} = \frac{\Phi^3 - \Phi^4 + 1}{\Phi^2} = \frac{\Phi^3 - \Phi^4 + 1}{\Phi^2} = \frac{\Phi^3 - \Phi^3 - \Phi^2 + 1}{\Phi^2} = \frac{\Phi^3 - \Phi^3 - \Phi^2 + 1}{\Phi^2} = \frac{\Phi^3 - \Phi^4 - 1}{\Phi^3} = \frac{\Phi^3 - \Phi^4 - 1}{\Phi^2} = \frac{\Phi^3 - \Phi^4 - 1}{\Phi^3} = \frac{\Phi^3 - \Phi^4 - 1}{\Phi^2} = \frac{\Phi^3 - \Phi^4 - 1}{\Phi^4 - 1} = \frac{\Phi^3 - \Phi^4 - 1}{\Phi^2} = \frac{\Phi^3$$

Steigung der Strecke \overline{ZB}_{-1} :

$$\frac{-\frac{\Phi^2}{\Phi^4 - 1}}{1 - \frac{\Phi}{\Phi^4 - 1}} = \frac{-\Phi^2}{\Phi^4 - 1 - \Phi} = \frac{-\Phi^2}{\Phi^3 + \Phi^2 - 1 - \Phi} = \frac{-\Phi^2}{\Phi^3 + \Phi + 1 - 1 - \Phi} = \frac{-\Phi^2}{\Phi^3} = -\frac{1}{\Phi}$$



Für die Steigungen $\frac{\Phi}{1}$ und $\frac{-\Phi^{-1}}{1}$ der Linien $B_{-2}B_0$ und $B_{-3}B_{-1}$ gilt :

$$\frac{\Phi}{1} \cdot \frac{-\Phi^{-1}}{1} = -1 \quad ,$$

also stehen die Linien senkrecht aufeinander.

Die Punkte A_0 , A_{-1} , A_{-2} , . . . sind "spiralig" angeordnet gegenüber dem Punkt

Wie entwickeln sich die Abstände $|Z\,A_0|$, $|Z\,A_{-1}|$, $|Z\,A_{-2}|$, . . . ?

Betrachten wir die Punkte $Z\left(\frac{\Phi}{\Phi^4-1};\frac{\Phi^2}{\Phi^4-1}\right)$, $A_0(0;\Phi)$, $A_{-1}(1;\Phi^{-1})$ und deren $|ZA_0|$, $|ZA_1|$ Abstände

$$|Z A_0| = \sqrt{\left(0 - \frac{\Phi}{\Phi^4 - 1}\right)^2 + \left(\Phi - \frac{\Phi^2}{\Phi^4 - 1}\right)^2}$$

$$|Z A_0| = \sqrt{\left(\frac{\Phi}{\Phi^4 - 1}\right)^2 + \left(\frac{\Phi^5 - \Phi - \Phi^2}{\Phi^4 - 1}\right)^2}$$

$$|ZA_0| = \sqrt{\left(\frac{\Phi}{\Phi^4 - 1}\right)^2 + \left(\frac{\Phi^4 + \Phi^3 - \Phi - \Phi^2}{\Phi^4 - 1}\right)^2}$$

$$|Z A_0| = \sqrt{\left(\frac{\Phi}{\Phi^4 - 1}\right)^2 + \left(\frac{\Phi^4 + \Phi^2 + \Phi - \Phi - \Phi^2}{\Phi^4 - 1}\right)^2}$$

$$|ZA_0| = \sqrt{\left(\frac{\Phi}{\Phi^4 - 1}\right)^2 + \left(\frac{\Phi^4}{\Phi^4 - 1}\right)^2}$$

$$|Z A_0| = \sqrt{\frac{\Phi^2 + \Phi^8}{(\Phi^4 - 1)^2}}$$

$$\begin{split} |Z\,A_{-1}| &= \sqrt{\left(1\!-\!\frac{\Phi}{\Phi^4\!-\!1}\right)^2 \,+\, \left(\Phi^{-1}\!-\!\frac{\Phi^2}{\Phi^4\!-\!1}\right)^2} \\ |Z\,A_{-1}| &= \sqrt{\left(\frac{\Phi^4\!-\!1\!-\!\Phi}{\Phi^4\!-\!1}\right)^2 \,+\, \left(\frac{1}{\Phi}\!-\!\frac{\Phi^2}{\Phi^4\!-\!1}\right)^2} \\ |Z\,A_{-1}| &= \sqrt{\left(\frac{\Phi^4\!-\!1\!-\!\Phi}{\Phi^4\!-\!1}\right)^2 \,+\, \left(\frac{\Phi^4\!-\!1\!-\!\Phi^3}{\Phi(\Phi^4\!-\!1)}\right)^2} \\ |Z\,A_{-1}| &= \sqrt{\left(\frac{\Phi^3\!+\!\Phi^2\!-\!1\!-\!\Phi}{\Phi^4\!-\!1}\right)^2 \,+\, \left(\frac{\Phi^3\!+\!\Phi^2\!-\!1\!-\!\Phi^3}{\Phi(\Phi^4\!-\!1)}\right)^2} \\ |Z\,A_{-1}| &= \sqrt{\left(\frac{\Phi^3}{\Phi^4\!-\!1}\right)^2 \,+\, \left(\frac{\Phi}{\Phi(\Phi^4\!-\!1)}\right)^2} \\ |Z\,A_{-1}| &= \sqrt{\left(\frac{\Phi^3}{\Phi^4\!-\!1}\right)^2 \,+\, \left(\frac{1}{\Phi^4\!-\!1}\right)^2} \\ |Z\,A_{-1}| &= \sqrt{\frac{\Phi^6 \,+\, 1}{(\Phi^4\!-\!1)^2}} \end{split}$$

Setzt man nun die Abstände $|ZA_0|$, $|ZA_{-1}|$ ins Verhältnis zueinander, so folgt:

$$\begin{split} \frac{|Z\,A_{0}|}{|Z\,A_{-1}|} &= \frac{\sqrt{\frac{\Phi^{2}\,+\,\Phi^{8}}{(\Phi^{4}-1)^{2}}}}{\sqrt{\frac{\Phi^{6}\,+\,1}{(\Phi^{4}-1)^{2}}}}\\ \frac{|Z\,A_{0}|}{|Z\,A_{-1}|} &= \sqrt{\frac{\Phi^{2}\,+\,\Phi^{8}}{\Phi^{6}+1}}\\ \frac{|Z\,A_{0}|}{|Z\,A_{-1}|} &= \sqrt{\frac{\Phi^{2}(1\,+\,\Phi^{6})}{1+\Phi^{6}}}\\ \hline \frac{|Z\,A_{0}|}{|Z\,A_{-1}|} &= \Phi \end{split}$$

Analog erhält man, dass

$$\frac{\left|ZA_{-n}\right|}{\left|ZA_{-(n+1)}\right|} = \Phi \quad \text{ist für alle} \quad n \ge 0 .$$

Aufgrund der letzten Gleichung und weil die aufeinanderfolgenden

Strecken $\overline{Z} \, \overline{A}_0$, $\overline{Z} \, \overline{A}_{-1}$, $\overline{Z} \, \overline{A}_{-2}$, . . . unter dem gleichen Winkel aufeinander stehen,

liegen die Punkte A_0 , A_{-1} , A_{-2} , . . . auf einer **Logarithmischen Spirale** .

Eine Logarithmische Spirale hat in Polarkoordinaten nämlich die Funktionsgleichung

$$\boxed{ \mathsf{r}(\phi) = \mathsf{a} \mathsf{e}^{\mathsf{k} \, \phi} }$$
 , mit a , $\mathsf{k} \in \mathbb{R}$,

und hat folgende Eigenschaft:

$$r(\varphi + \gamma) = ae^{k(\varphi + \gamma)}$$

$$r(\phi + \gamma) = ae^{k\phi + k\gamma}$$

$$r(\varphi + \gamma) = ae^{k\varphi}e^{k\gamma}$$

$$r(\varphi + \gamma) = e^{k\gamma} a e^{k\varphi}$$

$$r(\varphi + \gamma) = e^{k\gamma} r(\varphi) .$$

Das heißt, einer Winkeladdition um γ entspricht eine Multiplikation der Radius $r(\phi)$ mit $e^{k y}$.

Wendet man diese Eigenschaft auf die Werte $\gamma=\frac{\Pi}{2}$ und $e^{k\gamma}=e^{k\frac{\Pi}{2}}=\Phi$ an, so folgt für den Parameter k:

$$e^{k\frac{\Pi}{2}} = \Phi$$

$$k\frac{\Pi}{2} = \ln(\Phi)$$

$$k = \frac{2 \ln(\Phi)}{\Pi} \approx 0,30634896253003$$

Zur Bestimmung des Parameters a formt man die Gleichung um zu

$$a = \frac{r}{e^{k \cdot \varphi}}$$

und setzt die Polarkoordinaten von A_1 ein, also

$$r = |Z A_{-1}| = \sqrt{\frac{\Phi^6 + 1}{(\Phi^4 - 1)^2}}$$
 und

mit

$$\begin{split} \tan \phi \; &= \frac{\Phi^{-1} - \frac{\Phi^2}{\Phi^4 - 1}}{1 - \frac{\Phi}{\Phi^4 - 1}} \; = \; \frac{\Phi^{-1} \big(\Phi^4 - 1 \big) - \Phi^2}{\Phi^4 - 1 - \Phi} \; = \; \frac{\Phi^{-1} \big(\Phi^3 + \Phi^2 - 1 \big) - \Phi^2}{\Phi^3 + \Phi^2 - 1 - \Phi} \; = \; \frac{\Phi^{-1} \big(\Phi^3 + \Phi \big) - \Phi^2}{\Phi^3} \; = \; \\ &= \; \frac{\Phi^2 + 1 - \Phi^2}{\Phi^3} \; = \; \frac{1}{\Phi^3} \quad \text{, also} \end{split}$$

$$\phi \; = \; \tan^{-1} \bigg(\frac{1}{\Phi^3} \bigg) \; \; . \end{split}$$

$$a = \frac{r}{e^{k \phi}} = \frac{\sqrt{\frac{\Phi^6 + 1}{(\Phi^4 - 1)^2}}}{e^{\frac{2\ln(\Phi)}{\Pi} \cdot \tan^{-1}\left(\frac{1}{\Phi^3}\right)}} \approx 0,69252510951066$$

WxMaxima13.04.2

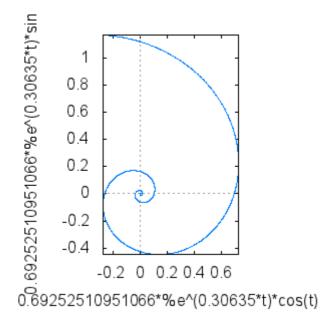
float(sqrt((%phi^6 +1)/(%phi^4 -1)^2)/(%e^((2*log(%phi)/%pi)*atan (%phi^-3))));

0.69252510951066

Die Gleichung der Goldenen Spirale lautet also :

 $r(\phi) = ae^{k\phi}$ mit a=0.69252510951066 k=0,30634896253003

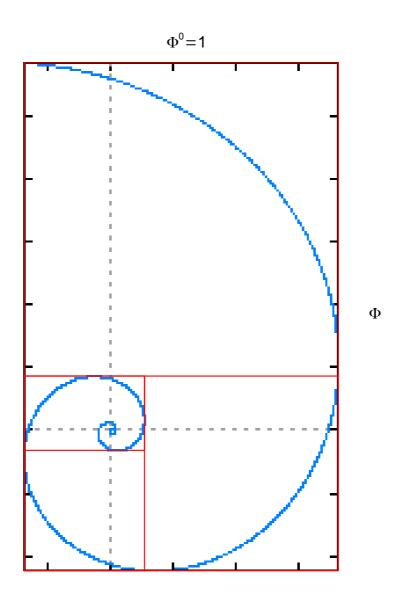
wxplot2d([parametric,a*%e^(.30635*t)*cos(t),a*%e^(.30635*t)*sin(t), [t,-6*%pi,6.5*%pi],[nticks,10000]], [x,-0.27639320225002, 0.72360679774998],[y,-0.44721359549996, 1.170820393249937], [gnuplot_preamble,"set size ratio 1.6180339"])\$



Goldenes Rechteck und Goldene Spirale

WxMaxima13.04.2

 $wxplot2d([parametric, a*%e^{(.30635*t)*cos(t)}, a*%e^{(.30635*t)*sin(t)},$ [t,-6*%pi,6.5*%pi],[nticks,10000]], [x,-0.27639320225002, 0.72360679774998],[y,-0.44721359549996, 1.170820393249937], [gnuplot_preamble,"set size ratio 1.6180339"])\$



 $r(\phi) = ae^{k\phi}$ mit a=0.69252510951066 k=0,30634896253003

Was bedeutet der Parameter k?

Darstellung der Logarithmischen Spirale in Kartesischen Koordinaten:

$$x = ae^{k\phi} \cdot cos\phi$$

$$y = ae^{k\phi} \cdot sin\phi$$

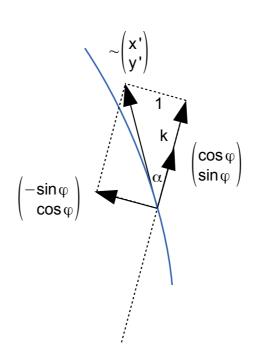
Ableitungen:

$$x' = kae^{k\phi} \cdot cos\phi - ae^{k\phi} \cdot sin\phi$$

$$y' = kae^{k\phi} \cdot sin\phi + ae^{k\phi} \cdot cos\phi$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = ka e^{k\phi} \cdot \left[k \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} + \begin{pmatrix} -\sin \phi \\ \cos \phi \end{pmatrix} \right]$$

Hier sind $\begin{pmatrix} \cos\phi \\ \sin\phi \end{pmatrix}$, $\begin{pmatrix} -\sin\phi \\ \cos\phi \end{pmatrix}$ orthogonale Einheitsvektoren in Richtung r und ϕ .



 α der Winkel der Tangente bezüglich der Richtung von r , der sogenannte Tangentenwinkel, dann gilt:

$$\cot \alpha = k$$

$$\alpha = \cot^{-1} \mathbf{k}$$

Für die Goldene Spirale ergibt sich der Tangentenwinkel zu

$$\alpha = \cot^{-1} \left(\frac{2 \ln(\Phi)}{\Pi} \right)$$

Da man am Taschenrechner TI-30 ECO RS die Kotangensfunktion nicht zur Verfügung hat, rechnet man folgendermaßen:

$$\tan(90^{\circ} - \alpha) = k$$

$$90^{\circ} - \alpha = \tan^{-1} \left(\frac{2 \ln(\Phi)}{\Pi} \right)$$

$$\alpha = 90^{\circ} - \tan^{-1} \left(\frac{2 \ln(\Phi)}{\Pi} \right)$$

$$\alpha = 72,96760887^{\circ}$$

Die Konsequenz ist, dass die Goldene Spirale das Goldene Rechteck im Punkt A₋₁ nicht berührt, sondern dass die Tangente einen Winkel von 86,25013446° hat und deshalb aus dem Rechteck heraustritt und dann wieder wieder eintritt :

Der Steigungswinkel von |Z A₋₁| ist nämlich

$$\varphi_1 = \tan^{-1} \left(\frac{\Phi^{-1} - \frac{\Phi^2}{\Phi^4 - 1}}{1 - \frac{\Phi}{\Phi^4 - 1}} \right) = \tan^{-1} \left(\frac{1}{\Phi^3} \right) \approx 13,28252559^\circ = 0.2318238045004 .$$

Wenn man nun den konstanten Tangentenwinkel $\alpha = 72,96760887^{\circ}$ der Spirale dazu addiert, ergibt sich für die Tangente nur ein Winkel von 86,25013446°, und eben keine 90°.

Dass die Goldene Spirale die Rechteckseite nicht berührt, sondern in in 2 (eng nebeneinander liegenden) Punkten schneidet, kann auch auf der algebraischnumerischen Ebene behandelt werden:

Der erste Schnittpunkt ist

$$A_{-1} \! = \! \left(a e^{k \phi_1} \; \; ; \; \; \phi_1 \right) \; \; mit \quad \; \phi_1 \! = \! tan^{-1} \! \left(\frac{1}{\Phi^3} \right) \; \approx \; \; 0.2318238045004 \; \; . \label{eq:alpha_1}$$

Wir zeigen, dass es noch einen weiteren Schnittpunkt A gibt

$$A = \left(ae^{k(\phi_1 + x)}; \phi_1 + x\right)$$
.

Die x-Koordinaten von A_{-1} und A stimmen dann überein, und es gilt:

$$a \ e^{k(\phi_1+x)} \ \cdot \ cos(\phi_1+x) \ = \ a \ e^{k\phi_1} \ \cdot \ cos(\phi_1)$$

$$a e^{k\phi_1} \cdot e^{kx} \cdot cos(\phi_1 + x) = a e^{k\phi_1} \cdot cos(\phi_1)$$

$$e^{kx} \cdot cos(\phi_1 + x) = cos(\phi_1)$$

$$e^{\frac{2\ln{(\Phi)}}{\Pi}x} \cdot \cos\!\left(tan^{-1}\!\left(\!\frac{1}{\Phi^3}\right)\!\!+\!x\right) = \cos\!\left(tan^{-1}\!\left(\!\frac{1}{\Phi^3}\right)\!\right)$$

$$e^{0.30634896253003x} \cdot \cos(0.2318238045004+x) = \cos(0.2318238045004)$$

$$-\cos(0.2318238045004) + e^{0.30634896253003x} \cdot \cos(0.2318238045004 + x) = 0$$

Plotten bzw. Nullstellenbestimmung dieser Gleichungen liefert für für x die beiden Werte :

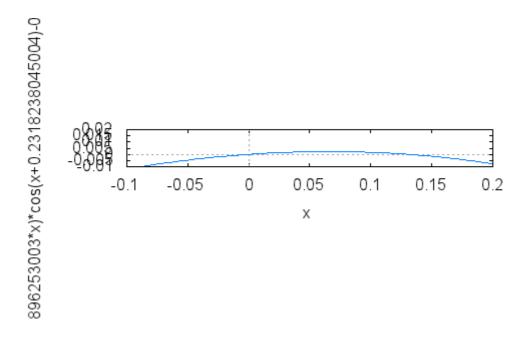
$$x = 0$$
 , $x = 0.13003147904276$

%e^(2*log(%phi)/%pi*x)*cos(atan(1/%phi^3+x))-cos(atan(1/%phi^3));

2*log(%phi)/%pi*x; float(k:2*log(%phi)/%pi);

atan(1/%phi^3); float(atan(1/%phi^3));

 $wxplot2d([-cos(0.2318238045004)+%e^{(0.30634896253003*x)}*cos(0.2318238045004+x)],$ [x,-.1,.2], [y,-.01,.02], [gnuplot preamble,"set size ratio .1"])\$



 $find_root(\%e^{(0.30634896253003*x)} *cos(0.2318238045004 +x) = cos(0.2318238045004), x,$ -.1, .1);

0.0

 $find_root(\%e^{(0.30634896253003*x)} *cos(0.2318238045004 +x) = cos(0.2318238045004), x,$.1, .2);

0.13003147904276