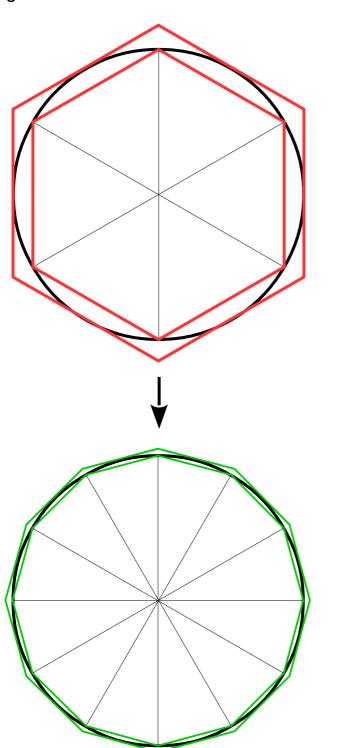
Fläche und Umfang des Kreises Mai 2015

Approximation der Kreisfläche durch einbeschriebene und umbeschriebene reguläre Vielecke durch sukzessive Eckenverdopplung

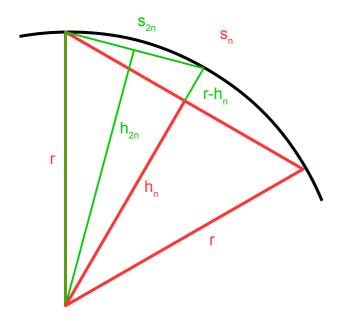


$$A_n < A_{K;r} < A'_n$$

$$A_{2n} < A_{K;r} < A'_{2n}$$

$$A_{2^k n} < A_{K;r} < A'_{2^k n}$$

Beziehungen zwischen den Bestimmungsdreiecken des einbeschriebenen n-Ecks und 2n-Ecks



$$\left(\frac{s_{_{n}}}{2}\right)^{_{2}} = r^{_{2}} - h_{_{n}}^{^{2}}$$

$$\frac{s_{n}}{2} \; = \; \sqrt{r^{2} \; - \; h_{n}^{\; 2}}$$

$$s_n = 2\sqrt{r^2 - h_n^2}$$

$$\boxed{ s_n = 2\sqrt{(r - h_n)(r + h_n)} }$$

$$A_n = n \frac{1}{2} s_n h_n$$

$$A_{n} \; = \; n \; \; \frac{1}{2} \; \; 2 \sqrt{(r \; - \; h_{n})(r \; + \; h_{n})} \; \; h_{n}$$

$$A_n \ = \ n \ \sqrt{(r \ - \ h_n)(r \ + \ h_n)} \ h_n$$

$$s_{2n}^2 = \left(\frac{s_n}{2}\right)^2 + (r - h_n)^2$$

$$s_{2n}^2 = r^2 - h_n^2 + (r - h_n)^2$$

$$s_{2n}^2 = r^2 - h_n^2 + r^2 - 2rh_n + h_n^2$$

$$s_{2n}^2 = 2r^2 - 2rh_n$$

$$\left(\frac{s_{2n}}{2}\right)^2 = 2r^2 - 2rh_n$$

$$\boxed{s_{2n} = \sqrt{2r(r - h_n)}}$$

$$h_{2n}^{2} = r^{2} - \left(\frac{s_{2n}}{2}\right)^{2}$$

$$h_{2n}^{2} = r^{2} - \frac{s_{2n}^{2}}{4}$$

$$h_{2n}^{2} = r^{2} - \frac{2r(r - h_{n})}{4}$$

$$h_{2n}^2 = r^2 - \frac{r(r - h_n)}{2}$$

$${h_{2n}}^2 \, = \, \frac{2r^2 \, - \, r \big(r \, - \, h_n \big)}{2}$$

$${h_{2n}}^2 \, = \, \frac{2r^2 \, - \, r^2 \, + \, r \, h_n}{2}$$

$$h_{2n}^{2} = \frac{r^2 + r h_n}{2}$$

$$h_{2n}^{2} \,=\, \frac{r \big(r \,+\, h_n\big)}{2}$$

$$h_{2n} = \sqrt{\frac{r(r + h_n)}{2}}$$

$$A_{2n} = 2n \frac{1}{2} s_{2n} h_{2n}$$

$$A_{2n} = 2n \frac{1}{2} \sqrt{2r(r - h_n)} \sqrt{\frac{r(r + h_n)}{2}}$$

$$A_{2n} \; = \; 2n \; \; \frac{1}{2} \; \; \sqrt{\frac{2r \big(r \; - \; h_n \big) r \big(r \; + \; h_n \big)}{2}}$$

$$A_{2n} = n \sqrt{(r - h_n)r(r + h_n)}$$

$$A_{2n} \; = \; \frac{r}{h_n} \; \; n \; \; \sqrt{(r \; - \; h_n)r(r \; + \; h_n)} \; \; h_n \label{eq:A2n}$$

$$A_{2n} = \frac{r}{h_n} A_n$$

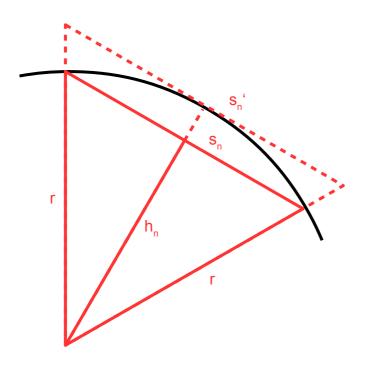
Wenn man also die Eckenzahl des Vielecks verdoppelt und vom Flächeninhalt A_n zu A_{2n} übergeht, gilt :

$$A_{n} < A_{2n}$$

$$\frac{r}{h_{n}} > 1$$

Die Folge der Flächeninhalte $\left(A_{2^kn}\right)_{k\ \in\ \mathbb{N}}$ der einbeschriebenen Vielecke ist also monoton wachsend .

Nun betrachtet man die umbeschriebenen Vielecke mit den Flächeninhalten A_n ', A_{2n} '



Nach dem 2. Strahlensatz gilt:

$$\frac{s_n'}{s_n} = \frac{r}{h_n} \Rightarrow s_n' = \frac{r}{h_n} s_n$$

Dann folgt:

$$A_n' = n \frac{1}{2} s_n' r$$

$$A_n' = n \frac{1}{2} \frac{r}{h_n} s_n r$$

$$A_{n}' \; = \; n \; \; \frac{1}{2} \; \; \frac{r}{h_{n}} \; \; 2 \sqrt{(r \; - \; h_{n})(r \; + \; h_{n})} \; \; r$$

$$A_n' = n \frac{r^2}{h_n} \sqrt{(r - h_n)(r + h_n)}$$

$$A_n' = \frac{r^2}{h_n^2} n \sqrt{(r - h_n)(r + h_n)} h_n$$

$$A_n' = \frac{r^2}{h_n^2} A_n$$

Analog erhält man für das umbeschriebene 2n-Eck zunächst :

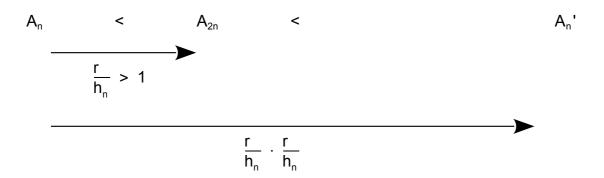
$$A_{2n}' = \frac{r^2}{h_{2n}^2} A_{2n}$$

$$A_{2n}' = \frac{r^2}{\frac{r(r + h_n)}{2}} \frac{r}{h_n} A_n$$

$$A_{2n}' = \frac{2r}{r + h_n} \frac{r}{h_n} A_n$$

$$A_{2n}' = \frac{r}{h_n} \frac{2r}{r + h_n} A_n$$

Bis jetzt haben wir folgende Anordnung der Flächeninhalte :



Wo ist nun $A_{2n}' = \frac{r}{h_n} \frac{2r}{r + h_n} A_n$ einzuordnen?

Behauptung: $A_{2n} < A_{2n}' < A_{n}'$

Beweis:

$$A_{2n} < A_{2n}'$$

$$\frac{r}{h_n}$$
 $A_n < \frac{r}{h_n}$ $\frac{2r}{r + h_n}$ A_n

$$1 < \frac{2r}{r + h_n}$$

$$r + h_n < 2r$$

$$h_n < r$$

Da die letzte Ungleichung nach Voraussetzung gilt, ist die erste Ungleichung Behauptung wahr.

$$A_{2n}' < A_n'$$

$$\frac{r}{h_n} \frac{2r}{r + h_n} A_n < \frac{r^2}{h_n^2} A_n$$

$$\frac{2}{r + h_n} < \frac{1}{h_n}$$

$$2h_n < r + h_n$$

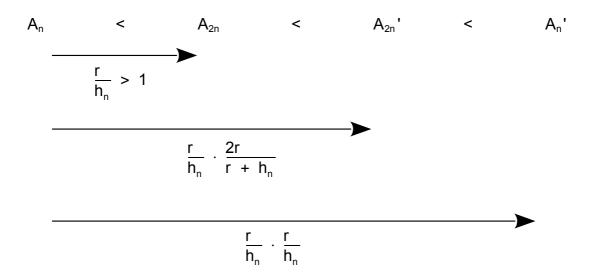
$$h_n < r$$

Da die letzte Ungleichung nach Voraussetzung gilt, ist die zweite Ungleichung Behauptung wahr.

q.e.d.

Die Folge der Flächeninhalte $\left(A_{2^kn}'\right)_{k\in\mathbb{N}}$ der umbeschriebenen Vielecke ist also monoton fallend .

Die Anordnung der Flächeninhalte ist nun wie folgt :



In der Intervallschreibweise haben wir für die Folge der Flächeninhalte ineinandergeschachtelte Intervalle :

$$\ldots \ \subset \ \left[\mathsf{A}_{2^k \mathsf{n}} \ ; \ \mathsf{A}_{2^k \mathsf{n}}' \right] \ \subset \ \ldots \ \subset \ \left[\mathsf{A}_{2\mathsf{n}} \ ; \ \mathsf{A}_{2\mathsf{n}}' \right] \ \subset \ \left[\mathsf{A}_{\mathsf{n}} \ ; \ \mathsf{A}_{\mathsf{n}}' \right]$$

Nun betrachtet man die Intervalllängen von $\begin{bmatrix} A_{2n} \ ; \ A_{2n}' \end{bmatrix} \subset \begin{bmatrix} A_n \ ; \ A_n' \end{bmatrix}$:

$$A_{2n}' - A_{2n} = \frac{r}{h_n} \frac{2r}{r + h_n} A_n - \frac{r}{h_n} A_n$$

$$A_{2n}' - A_{2n} = \left(\frac{r}{h_n} \frac{2r}{r + h_n} - \frac{r}{h_n}\right) A_n$$

$$A_{2n}' - A_{2n} = \frac{r}{h_n} \left(\frac{2r}{r + h_n} - 1 \right) A_n$$

$$A_{2n}' - A_{2n} = \frac{r}{h_n} \left(\frac{2r - (r + h_n)}{r + h_n} \right) A_n$$

$$A_{2n}' - A_{2n} = \frac{r}{h_n} \frac{r - h_n}{r + h_n} A_n$$

$$A_{n}' - A_{n} = \frac{r^{2}}{h_{n}^{2}} A_{n} - A_{n}$$

$$A_n' - A_n = \left(\frac{r^2}{h_n^2} - 1\right) A_n$$

$$A_n' - A_n = \frac{r^2 - h_n^2}{h_n^2} A_n$$

$$A_n' - A_n = \frac{(r - h_n)(r + h_n)}{h_n^2} A_n$$

Behauptung:
$$A_{2n}' - A_{2n} < \frac{1}{2}(A_n' - A_n)$$

Beweis:

$$A_{2n}' - A_{2n} < \frac{1}{2}(A_n' - A_n)$$

$$\frac{r}{h_n} \frac{r - h_n}{r + h_n} A_n < \frac{1}{2} \frac{(r - h_n)(r + h_n)}{h_n^2} A_n$$

$$\frac{r}{r + h_n} < \frac{1}{2} \frac{\left(r + h_n\right)}{h_n}$$

$$2rh_n < (r + h_n)^2$$

$$2rh_n < r^2 + 2rh_n + h_n^2$$

$$0 < r^2 + h_n^2$$

Da die letzte Ungleichung wahr ist, ist die Behauptung wahr.

q.e.d.

Für die Folge der Intervalllängen gilt also folgende Abschätzung

$$A_{2n}' - A_{2n} < \frac{1}{2}(A_{n}' - A_{n})$$

$$A_{2^2n}' - A_{2^2n} < \frac{1}{2}(A_{2n}' - A_{2n})$$

$$A_{2^{2}n}' - A_{2^{2}n} < \frac{1}{2^{2}}(A_{n}' - A_{n})$$

.

so dass die Folge der Intervalllängen von der Nullfolge $\left(\frac{1}{2^k}(A_n'-A_n)\right)_{k\in\mathbb{N}}$ majorisiert wird.

Damit ist $\lim_{k \to \infty} \left(A_{2^k n}' - A_{2^k n} \right) = 0$ und die Folge der Flächeninhalte der ein- und umbeschriebenen Vielecke bildet eine Intervallschachtelung $\left[A_{2^k n} \; ; \; A_{2^k n}' \right]_{k \in \mathbb{N}}$, deren Zentrum der Flächeninhalt des Kreises $A_{K;r}$ darstellt :

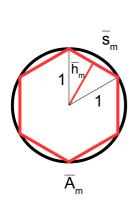
$$A_{K;r} = \lim_{k \to \infty} A_{2^k n} = \lim_{k \to \infty} A_{2^k n}'$$

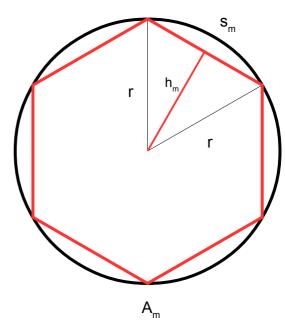
Herleitung der Flächenformel des Kreises

Die vorigen Überlegungen gelten insbesonders auch für den Einheitskreis und den Flächeninhalt $A_{K;1}$ des Einheitskreises.

$$A_{K;1} = \lim_{k \to \infty} \bar{A}_{2^k n} = \lim_{k \to \infty} \bar{A}_{2^k n}' =: \pi$$

Wir betrachten die m-ten Approximationen \overline{A}_m und A_m , $m=2^kn$, des Einheitskreises und des Kreises mit Radius r :





Wegen der Strahlensätze

$$\frac{s_m}{\bar{s}_m} \,=\, \frac{r}{1} \ , \ \frac{h_m}{\bar{h}_m} \,=\, \frac{r}{1} \ , \text{ also } \ s_m \,=\, r\,\bar{s}_m \ , \ h_m \,=\, r\,\bar{h}_m \ \text{ folgt:}$$

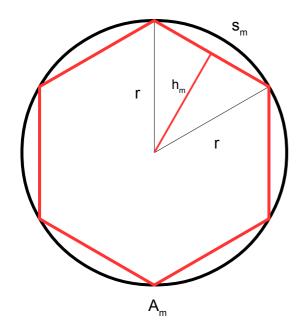
$$A_{m} = m \frac{1}{2} s_{m} h_{m}$$

$$A_m \; = \; m \; \; \frac{1}{2} \; \; r \, \bar{s}_m \; \; r \, \bar{h}_m \label{eq:Am}$$

$$A_m \; = \; m \; \; \frac{1}{2} \; \; \bar{s}_m \; \; \bar{h}_m \; \; r^2$$

$$A_m = \bar{A}_m r^2$$

Herleitung der Umfangsformel des Kreises



$$A_m = m \frac{1}{2} s_m h_m$$

$$A_m = \frac{1}{2} m s_m h_m$$

$$A_m = \frac{1}{2} U_m h_m$$
, wobei U_m der Umfang des m-Ecks ist.

Es folgt :

$$U_m = 2 \frac{A_m}{h_m}$$

$$\lim_{m \to \infty} U_m = \lim_{m \to \infty} 2 \frac{A_m}{h_m}$$

$$\lim_{m \to \infty} \ U_m \ = \ 2 \ \lim_{m \to \infty} \ \frac{A_m}{h_m}$$

$$\lim_{m \to \infty} \ U_m \ = \ 2 \ \frac{A_{K;r}}{r}$$

$$\lim_{m \to \infty} \ U_m \ = \ 2 \ \frac{\pi \ r^2}{r}$$

$$\lim_{m \to \infty} \ U_m \ = \ 2 \ \pi \ r$$

Analog folgt:

$$A_m' = m \frac{1}{2} s_m' r$$

$$A_m' = \frac{1}{2} U_m' r$$

$$U_m' = 2 \frac{A_m'}{r}$$

$$\lim_{m \to \infty} \ U_m{}' \ = \ \lim_{m \to \infty} \ 2 \ \frac{A_m{}'}{r}$$

$$\lim_{m \to \infty} \ U_m' \ = \ 2 \ \frac{A_{\kappa;r}'}{r}$$

$$\lim_{m\to\infty} \ U_m' \ = \ 2 \ \frac{\pi \, r^2}{r}$$

$$\lim_{m\to\infty}~U_m{}'~=~2~\pi r$$

Die Grenzwerte für die innere und äußere Approximation stimmen überein, deshalb ergibt sich der **Kreisumfang** zu

$$U_{K;r} = 2 \pi r$$

Bei der Herleitung der Umfangsformel wurde $\lim_{m \to \infty} h_m = r$ mit $m = 2^k n$, $k \in \mathbb{N}$, benutzt, was zu zeigen ist.

Wir zeigen zuerst $h_n < h_{2n} = \sqrt{\frac{r(r + h_n)}{2}}$:

$$h_n < \sqrt{\frac{r(r + h_n)}{2}}$$

$$h_n^2 < \frac{r(r + h_n)}{2}$$

$$2 h_n^2 < r(r + h_n)$$
.

Die letzte Ungleichung ist wahr wegen $r(r + h_n) > h_n(h_n + h_n) = 2 h_n^2$.

Nun zeigen wir $r - h_{2n} < \frac{1}{2} (r - h_n)$:

$$r - h_{2n} < \frac{1}{2} (r - h_n)$$

$$r - \sqrt{\frac{r(r + h_n)}{2}} < \frac{1}{2} (r - h_n)$$

$$r - \frac{1}{2} (r - h_n) < \sqrt{\frac{r(r + h_n)}{2}}$$

$$\frac{2r - (r - h_n)}{2} < \sqrt{\frac{r(r + h_n)}{2}}$$

$$\frac{r + h_n}{2} < \sqrt{\frac{r(r + h_n)}{2}}$$

$$\frac{\left(r + h_{n}\right)^{2}}{4} < \frac{r\left(r + h_{n}\right)}{2}$$

$$(r + h_n)^2 < 2 r(r + h_n)$$

$$r^2 + 2rh_n + h_n^2 < 2r^2 + 2rh_n$$

$$h_n^2 < r^2$$

$$h_n < r$$

Die letzte Ungleichung ist wahr.

Es gelten nun folgende Abschätzungen:

$$\boxed{r - h_{2n} < \frac{1}{2} (r - h_n)}$$

$$r - h_{2^2n} < \frac{1}{2} (r - h_{2n})$$

$$r - h_{2^2n} < \frac{1}{2^2} (r - h_n)$$

.

.

$$r - h_{2^k n} < \frac{1}{2^k} (r - h_n)$$
,

 $\text{so dass die Folge} \quad \left(r \ - \ h_{2^k n}\right)_{k \ \in \ \text{seN}} \quad \text{von der Nullfolge} \quad \left(\frac{1}{2^k} \left(r \ - \ h_n\right)\right)_{k \ \in \ I\!N} \quad \text{majorisiert wird}.$

Es folgt:

$$\lim_{k\to\infty} \ \left(r \ - \ h_{2^k n} \right) \ = \ 0$$

$$r - \lim_{k \to \infty} h_{2^k n} = 0$$

$$r = \lim_{k \to \infty} h_{2^k n}$$

q.e.d.

Berechnung von π (als Flächeninhalt des Einheitskreises)

LibreOfficePortable4.1.2

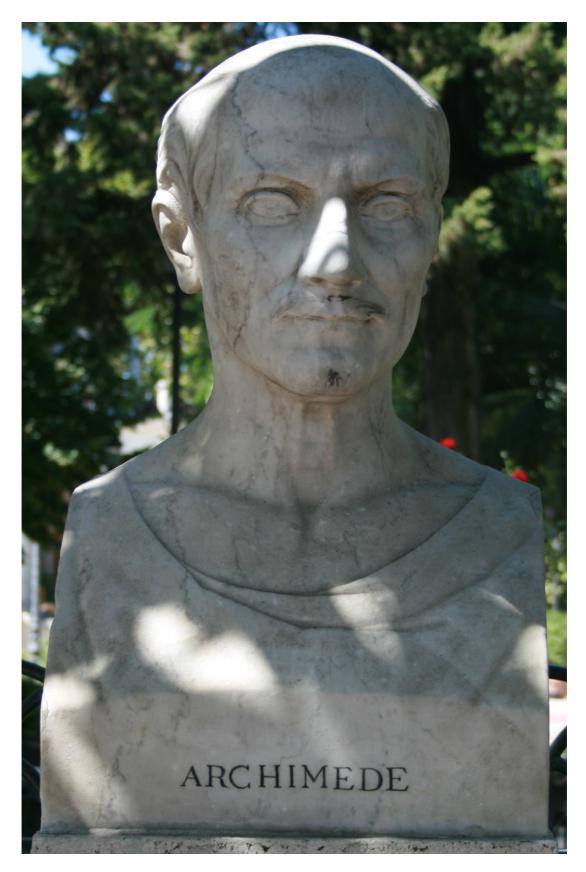
(2^k)*6	s	h	A innen	A außen
6	1,000000000	0,866025404	2,598076211	3,000000000
12	0,517638090	0,965925826	3,000000000	3,105828541
24	0,261052384	0,991444861	3,105828541	3,132628613
48	0,130806258	0,997858923	3,132628613	3,139350203
96	0,065438166	0,999464587	3,139350203	3,141031951
192	0,032723463	0,999866138	3,141031951	3,141452472
384	0,016362279	0,999966534	3,141452472	3,141557608
768	0,008181208	0,999991633	3,141557608	3,141583892
1536	0,004090613	0,999997908	3,141583892	3,141590463
3072	0,002045307	0,999999477	3,141590463	3,141592106
6144	0,001022654	0,999999869	3,141592106	3,141592517
12288	0,000511327	0,99999967	3,141592516	3,141592619
24576	0,000255663	0,999999992	3,141592620	3,141592645
49152	0,000127832	0,99999998	3,141592639	3,141592645
98304	0,000063916	0,999999999	3,141592644	3,141592645

Archimedes von Syrakus (-287 - -212)

Der **Archimedische** Näherungswert für π am 96-Eck ist $3\frac{10}{71} < \pi < 3\frac{10}{70}$, dezimal also $3,14084507 < \pi < 3,\overline{142857}$.

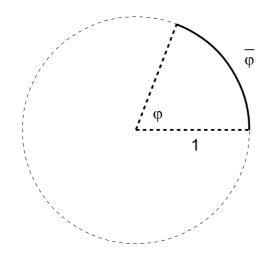
Büste des Archimedes im Park der Villa Borghese in Rom

(Es gibt dort insgesamt 228 Büsten von bedeutenden Personen Italiens)



http://commons.wikimedia.org/wiki/File%3AArchim%C3%A8de_Villa_Borghese.jpg

Winkel im Grad- und Bogenmaß



Jedem Winkel im **Einheitskreis**, der im Gradmaß ϕ gegeben ist, wird die Länge $\overline{\phi}$ des zugehörigen Kreisbogens zugeordnet .

Speziell gilt:

360° →
$$\overline{\phi}$$
 = 2 π

Aufgrund der Additivität der Länge ist die Zuordnung linear :

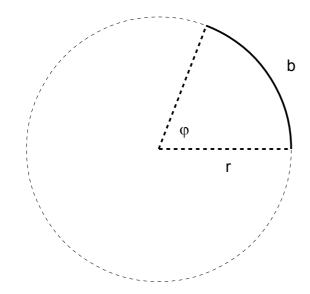
$$\phi_1 + \phi_2 \longmapsto \overline{\phi_1} + \overline{\phi_2}$$
 für alle ϕ_1 , ϕ_2
 $v \phi \longmapsto v \overline{\phi}$ für alle v

Wegen $\varphi = \frac{\varphi}{360^{\circ}} 360^{\circ}$ folgt:

$$\varphi \longmapsto \overline{\varphi} = \frac{\varphi}{360^{\circ}} 2\pi = \frac{\pi \varphi}{180^{\circ}}$$

Die Zahl
$$\overline{\phi} = \frac{\pi - \phi}{180^{\circ}}$$
 heißt **Bogenmaß des Winkels** ϕ .

Länge eines Kreisbogens



Jedem Winkel, der im Gradmaß $\;\phi\;$ gegeben ist, wird die Länge $\;$ b des zugehörigen Kreisbogens zugeordnet .

Speziell gilt:

Aufgrund der Additivität der Länge ist die Zuordnung linear :

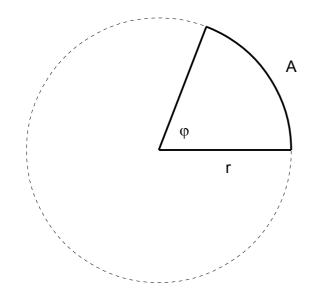
Wegen $\varphi = \frac{\varphi}{360^{\circ}} 360^{\circ}$ folgt :

$$\phi \longmapsto b = \frac{\phi}{360^{\circ}} 2\pi r = \frac{\pi \phi r}{180^{\circ}}$$

Die Länge des Kreisbogens $\,$ zum zugehörigen Winkel $\,$ ϕ $\,$ ist gegeben durch :

$$b = \frac{\pi \varphi r}{180^{\circ}} = \overline{\varphi} r$$

Fläche eines Kreisausschnitts



Jedem Winkel, der im Gradmaß $\,\phi\,$ gegeben ist, wird die Fläche $\,$ A des zugehörigen Kreisauschnitts zugeordnet .

Speziell gilt:

$$360^{\circ} \longrightarrow A = \pi r^2$$

Aufgrund der Additivität des Flächeninhalts ist die Zuordnung linear :

Wegen
$$\varphi = \frac{\varphi}{360^{\circ}}$$
 360° folgt:

$$\varphi \longmapsto A = \frac{\varphi}{360^{\circ}} \pi r^2$$

Die **Fläche des Kreisausschnitts** mit dem zugehörigen Winkel ϕ ist gegeben durch :

$$A = \frac{\pi \ \phi \ r^2}{360^{\circ}} = \frac{1}{2} \ b \ r \qquad .$$

Fläche eines Kreisabschnitts

$$(r-h)^2 = r^2 - a^2$$

$$r-h = \sqrt{r^2 - a^2}$$

$$a^2 = r^2 - (r-h)^2$$

$$\begin{array}{l} a^2 \ = \ r^2 \ - \ (r - h)^2 \\ a^2 \ = \ r^2 \ - \ (r^2 \ - \ 2rh \ + \ h^2) \\ a^2 \ = \ 2rh \ - \ h^2 \\ a^2 \ = \ h(2r \ - \ h) \end{array}$$

$$a^2 = 2rh - h^2$$

$$a^2 = h(2r - h)$$

$$a = \sqrt{h(2r - h)}$$

$$A = \frac{1}{2} b r - \frac{1}{2} 2a (r-h)$$

$$A = \frac{1}{2} b r - a (r-h)$$

$$A = \frac{1}{2} b r - a \sqrt{r^2 - a^2}$$

$$A = \frac{\pi \phi r^2}{360^{\circ}} - a \sqrt{r^2 - a^2}$$

$$A = \frac{1}{2} b r - \frac{1}{2} 2a (r-h)$$

$$A = \frac{1}{2} b r - a (r-h)$$

$$A = \frac{1}{2} b r - \sqrt{h(2r - h)} (r-h)$$

$$A = \frac{\pi \ \phi \ r^2}{360^{\circ}} - \sqrt{h(2r \ - \ h)} \ (r - h)$$

