Der Satz von Bolzano und Weierstraß und das

Cauchy-Kriterium für Folgen in R

Arno Fehringer, Juni 2016

Intervallschachtelungsaxiom

[IA] Jede Intervallschachtelung $[A_n, B_n]_{n \in \mathbb{N}} \subset \mathbb{R}$ hat genau ein Zentrum z.

Satz von Bolzano und Weierstraß

- (1) Jede beschränkte Folge $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ hat einen größten und einen kleinsten Häufungspunkt H^* und H_* .
- (2) Der Punkt H ist Häufungspunkt der Folge $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ genau dann, wenn es eine gegen H konvergente Teilfolge $(a_{n_k})_{k \in \mathbb{N}}$ gibt .

Beweis (1):

Man zeigt zunächst die Existenz des **größten Häufungspunktes** H^{*}:

Es gelte für alle $n \in IN$: $A_1 \le a_n \le B_1$. Setze $I_1 := [A_1, B_1]$.

Sei \mbox{M} die Mitte von $\left[\mbox{A}_{1},\mbox{B}_{1}\right]$. Es gibt nur 3 mögliche Konstellationen :

- Sowohl $[A_1,M]$ und $[M,B_1]$ enthalten unendlich viele Folgenglieder von $(a_n)_{n\in\mathbb{N}}$.
- II Nur $[M,B_1]$ enthält unendlich viele Folgenglieder .
- III Nur $[A_1, M]$ enthält unendlich viele Folgenglieder .

In den Fällen I, II setze : $I_2 = [A_2, B_2] := [M, B_1]$.

Ansonsten setze : $I_2 \ = \ \left[A_{2,} B_2 \right] \ := \ \left[A_1, M \right] \ .$

Fährt man in dieser Weise fort, erhält man eine Intervallschachtelung $(I_n)_{n \in \mathbb{N}}$, die nach dem Intervallschachtelungsaxiom das Zentrum H^* hat .

Nach Konstruktion der Intervallschachtelung liegen also oberhalb jedes Intervalls I_n höchstens endlich viele Folgenglieder !

Sei nun $\epsilon>0$ vorgegeben. Dann gibt es ein $n_0\in IN$ mit $I_{n_0}\in U_\epsilon(H^\star)$. Dann enthält I_{n_0} und damit $U_\epsilon(H^\star)$ unendlich viele a_n . Also ist H^\star ein Häufungspunkt.

Jetzt zeigt man noch, dass H der größte Häufungspunkt ist :

Sei H mit H * < H ein noch größerer Häufungspunkt der Folge $(a_n)_{n \in \mathbb{N}}$.

Setze:
$$\epsilon_0 := \frac{H - H^*}{2}$$
.

Dann sind die Umgebungen $U_{\epsilon_0}(H^*)$, $U_{\epsilon_0}(H)$ disjunkt mit $U_{\epsilon_0}(H^*)$ < $U_{\epsilon_0}(H)$.

Da nun oberhalb des Intervalls I_{n_0} höchstens endlich viele Folgenglieder liegen, kann H kein Häufungspunkt sein .

Also ist H^* der **größte Häufungspunkt** der Folge $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$

Mit einer entsprechenden Konstruktion einer Intervallschachtelung zeigt man, die Existenz des **kleinsten Häufungspunktes** H. .

Beweis (2):

Sei $\left(a_{n_k}\right)_{k\in\mathbb{N}}$ eine konvergente Teilfolge der Folge $\left(a_n\right)_{n\in\mathbb{N}}\subset\mathbb{R}$, welche gegen H konvergiere .

Sei $\epsilon > 0$ gegeben . Dann gibt es ein n_{k_a} , so dass für alle $n_k > n_{k_a}$ gilt :

$$\left|\mathsf{a}_{\mathsf{n}_{\mathsf{k}}} - \mathsf{H}\right| < \epsilon$$
 .

Da also fast alle Teilfolgenglieder a_{n_k} in $U_\varepsilon(H)$ liegen, ist H ein Häufungspunkt der Folgen $\left(a_{n_k}\right)_{k \ \in \ I\!N}$ und $\left(a_n\right)_{n \ \in \ I\!N}$.

Sei nun umgekehrt H ein Häufungspunkt der Folge $(a_n)_{n\in\mathbb{N}}$. Dann heißt dies, dass jede Umgebung $U_\varepsilon(H)$ unendlich viele Folgenglieder a_n enthält .

Für die so konstruierte Teilfolge $\left(a_{n_k}\right)_{k \in I\!\!N}$ gilt dann $\left|a_{n_k} - H\right| < \frac{1}{k}$ für alle $k \in I\!\!N$. Also konvergiert die Folge $\left(a_{n_k}\right)_{k \in I\!\!N}$ gegen H.

q.e.d.

Satz

Jede beschränkte monotone Folge $a_n \in \mathbb{R}$ ist konvergent.

Beweis:

Sei die Folge a_n monoton wachsend. Nach dem **Satz von Bolzano-Weierstraß** gibt es eine Teilfolge a_{n_k} mit $\lim_{k\to -\infty} a_{n_k}=z$.

Zu vorgegebenen $\varepsilon > 0$ gibt es ein n_{k_0} , so dass gilt:

$$|a_{n_k} - z| < \epsilon$$
 für alle $n_k > n_{k_0}$.

Wegen der Monotonie gilt dann :

$$|a_n-z| < \varepsilon$$
 für alle $n > n_{k_n}$.

q.e.d.

Cauchy-Kriterium für Folgen in R

Für jede Folge $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ gilt :

$$\lim_{n \to \infty} \ a_n \ = \ a \quad \Leftrightarrow \quad \forall \quad \varepsilon \ > \ 0 \quad \ \exists \quad \ n_0 \in \ \, |N \quad \ \, \forall \qquad \ \, n,m \ > \ \, n_0 \ : \quad \left|a_n \ - \ a_m\right| \ < \ \, \varepsilon$$

Beweis:

Sei $\lim_{n \to \infty} a_n = a$ und sei $\varepsilon > 0$ gegeben . Dann gibt es ein $n_0 \in IN$ mit

$$|a_n - a| < \frac{\epsilon}{2}$$
.

Für alle $n,m > n_0$ gilt dann :

$$\left| a_{n} \, - \, a_{m} \right| \, = \, \left| a_{n} \, - \, \, a \, + \, \, a \, - \, \, a_{m} \right| \, \leq \, \left| a_{n} \, - \, \, a \right| \, + \, \left| a \, - \, \, a_{m} \right| \, < \, \frac{\varepsilon}{2} \, + \, \frac{\varepsilon}{2} \, = \, \varepsilon$$

 $\mbox{Umgekehrt gelte}: \ \, \forall \quad \varepsilon > 0 \quad \exists \quad n_0 \in I\!N \quad \forall \quad \ \, n,m > n_0 \, : \, \, \left|a_n \, - \, a_m\right| < \varepsilon \ . \label{eq:nmgekehrt}$

Dann gibt es zu $\varepsilon=1$ ein $n_0\in I\!N$, so dass für alle $n,m>n_0$ gilt $|a_n-a_m|<1$.

Speziell gilt dann für n_0+1 und für alle $m>n_0$: $\left|a_{n_o+1}-a_m\right|<1$.

Anders gesagt liegen alle $\quad a_m \quad \text{mit} \quad m \, > \, n_0 \quad \text{in der Umgebung} \quad U_1 \big(a_{n_0+1} \big) \quad .$

Also ist die Folge $\left(a_n\right)_{n \ \in \ I\!N} \ \subset \ I\!R \quad nach \ oben \ und \ unten \ beschränkt$:

$$min\big\{a_0\ ,\ ...\ ,\ a_{n_0}\ ,\ a_{n_0+1}-1\big\}\ \le\ \big(a_n\big)_{n\ \in\ I\!N}\ \le\ max\big\{a_0\ ,\ ...\ ,\ a_{n_0}\ ,\ a_{n_0+1}+1\big\}$$

Nach dem Satz von Bolzano und Weierstraß gibt es eine konvergente Teilfolge

$$\left(a_{n_k}\right)_{\!\!k\;\in\; I\!\!N}\quad mit\quad \lim_{k\to\infty}\;\;a_{n_k}\;=\;a\quad.$$

Man zeigt nun, dass auch $\lim_{n\to\infty} a_n = a$ gilt :

Sei also $\ \epsilon > 0$ gegeben . Dann gibt es ein $\ N \in IN$ mit $|a_n - a_m| < \frac{\varepsilon}{2} \ \ \text{für alle} \ \ n,m > N \ \ .$

Es existiert außerdem ein $n_K > N$ mit

$$\left|a_{n_k}-a\right|<\frac{\varepsilon}{2} \ \ \mbox{für alle} \ \ \ n_k>n_K>N \ \ .$$

Dann folgt für alle n > N:

$$\left| a_{n} \, - \, a \right| \, = \, \left| a_{n} \, - \, a_{n_{k}} \, + \, a_{n_{k}} \, - \, a \right| \, \leq \, \left| a_{n} \, - \, a_{n_{k}} \right| \, + \, \left| a_{n_{k}} \, - \, a \right| \, < \, \frac{\varepsilon}{2} \, + \, \frac{\varepsilon}{2} \, = \, \varepsilon$$

q.e.d.