Der Inhalt eines r - dimensionalen Parallelotops im IRⁿ

Die Gramsche Determinante

Arno Fehringer

Dezember 2021

Voraussetzungen :

Um das vorliegende Skriptum zu verstehen, benötigt man Kenntnisse über das Skalarprodukt von Vektoren im \mathbb{R}^n , die Entwicklung und Eigenschaften der Determinantenfunktion sowie die Darstellung der Lösungen linearer Gleichungssysteme durch Determinanten.

Quellen :

Deiser, Oliver ; Lasser, Caroline : Erste Hilfe in Linearer Algebra ; März 2021 <u>https://www.aleph1.info/?call=Puc&permalink=ela1</u>

Friedl, Stefan : Geometrie für Lehramt Gymnasium ; Uni Regensburg SS 2019 <u>http://www.mathematik.uni-regensburg.de/friedl/papers/2019_geometrie-fuer-lehramt</u>

Bemerkung : In beiden Quellen sind die Details der Herleitung der Inhaltsfomel für Parallelotope nicht ausgeführt. Deshalb habe ich das vorliegende Skriptum erstellt.

Definition:

Im n-dimensionalen Raum \mathbb{R}^n seien die linear unabhängigen Vektoren $\vec{a_1}, ..., \vec{a_r}$, mit $1 \le r \le n$ sowie der Vektor \vec{t} gegeben.

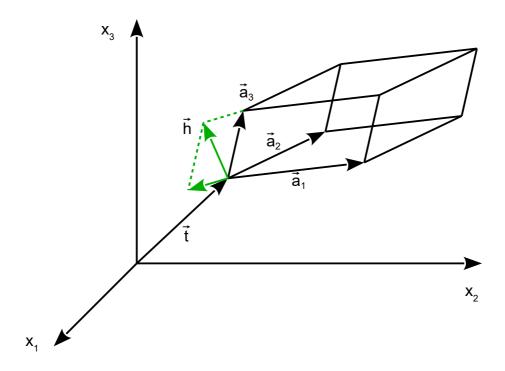
Dann heißt die Menge

$$\mathsf{P}_r = \left\{ \vec{x} \in {\rm I\!R}^n \ | \ \vec{x} = \vec{t} + \sum_{i=1}^r \lambda_i \ \vec{a}_i \ , \ 0 {\leq} \lambda_i {\leq} 1 \ i{=}1,...,r \right\}$$

das von den Vektoren $\vec{a_1}$, ..., $\vec{a_r}$, erzeugte **r-dimensionale Parallelotop**.

Der **r-dimensionale Inhalt** I_r des Parallelotops P_r ist induktiv definiert durch :

 $I_1 := I\vec{a}_1 I$ $I_{r+1} := I_r \cdot I\vec{h} I$ mit $\vec{h} \perp \vec{a}_1 , ... , \vec{a}_r$



$$I_{2} = I_{1} \cdot I\vec{h}I \quad \text{mit} \quad \vec{h} \perp \vec{a}_{1} \quad , \quad \vec{h} = -\alpha_{1}\vec{a}_{1} + \vec{a}_{2} \quad , \quad I_{1} = I\vec{a}_{1}I$$

$$I_{2}^{2} = I_{1}^{2} \cdot \vec{h}^{2}$$

$$I_{2}^{2} = \vec{a}_{1}^{2} \cdot \vec{h}^{2}$$

$$\vec{h}^{2} = -(\alpha_{1}\vec{a}_{1})^{2} + \vec{a}_{2}^{2}$$

$$\vec{h}^{2} = -\vec{a}_{1}^{2}\alpha_{1}^{2} + \vec{a}_{2}^{2}$$

$$\vec{h}^{2} = -\vec{a}_{1}\vec{a}_{1}\alpha_{1}^{2} + \vec{a}_{2}^{2}$$
Satz des Pythagoras

$$\vec{a}_1 \vec{h} = 0$$

$$-\vec{a}_1 \vec{a}_1 \alpha_1 + \vec{a}_1 \vec{a}_2 = 0$$

$$\alpha_1 = \frac{\vec{a}_1 \vec{a}_2}{\vec{a}_1 \vec{a}_1}$$

$$-\vec{a}_{1}\vec{a}_{1}\alpha_{1} + \vec{a}_{1}\vec{a}_{2} = 0 \qquad I \cdot \alpha_{1}$$
$$-\vec{a}_{1}\vec{a}_{1}\alpha_{1}^{2} + \vec{a}_{1}\vec{a}_{2}\alpha_{1} = 0$$
$$-\vec{a}_{1}\vec{a}_{1}\alpha_{1}^{2} = -\vec{a}_{1}\vec{a}_{2}\alpha_{1}$$

$$\vec{h}^{2} = -\vec{a}_{1}\vec{a}_{1}\alpha_{1}^{2} + \vec{a}_{2}^{2}$$

$$\vec{h}^{2} = -\vec{a}_{1}\vec{a}_{2}\alpha_{1} + \vec{a}_{2}^{2}$$

$$\vec{h}^{2} = -\vec{a}_{1}\vec{a}_{2}\frac{\vec{a}_{1}\vec{a}_{2}}{\vec{a}_{1}\vec{a}_{1}} + \vec{a}_{2}^{2}$$

$$\vec{h}^{2} = -\frac{(\vec{a}_{1}\vec{a}_{2})^{2}}{\vec{a}_{1}\vec{a}_{1}} + \vec{a}_{2}^{2}$$

$$\vec{a}_{1}^{2}\vec{h}^{2} = -(\vec{a}_{1}\vec{a}_{2})^{2} + \vec{a}_{1}^{2}\vec{a}_{2}^{2}$$

$$\vec{l}_{2}^{2} = \begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{2} \end{bmatrix} Dete$$

Determinante der Gramschen Matrix

J. P. Gram , Dänischer Mathematiker (1850 - 1916)

$$I_{3} = I_{2} \cdot I \vec{h} I \quad \text{mit} \quad \vec{h} \perp \vec{a}_{1} , \vec{a}_{2} , \qquad \vec{h} = -(\alpha_{1}\vec{a}_{1} + \alpha_{2}\vec{a}_{2}) + \vec{a}_{3}$$

$$I_{3}^{2} = I_{2}^{2} \cdot \vec{h}^{2}$$

$$\vec{h}^{2} = -(\alpha_{1}\vec{a}_{1} + \alpha_{2}\vec{a}_{2})^{2} + \vec{a}_{3}^{2}$$

$$\vec{h}^{2} = -(\vec{a}_{1}^{2}\alpha_{1}^{2} + 2\vec{a}_{1}\vec{a}_{2}\alpha_{1}\alpha_{2} + \vec{a}_{2}^{2}\alpha_{2}^{2}) + \vec{a}_{3}^{2}$$
Satz des Pythagoras

$$\vec{a_1}\vec{h} = 0 , \quad \vec{a_2}\vec{h} = 0$$

$$I - \vec{a_1}\vec{a_1}\alpha_1 - \vec{a_1}\vec{a_2}\alpha_2 + \vec{a_1}\vec{a_3} = 0$$

$$II - \vec{a_1}\vec{a_2}\alpha_1 - \vec{a_2}\vec{a_2}\alpha_2 + \vec{a_2}\vec{a_3} = 0$$

$$\mathbf{I} \quad \vec{\mathbf{a}}_1 \vec{\mathbf{a}}_1 \alpha_1 + \vec{\mathbf{a}}_1 \vec{\mathbf{a}}_2 \alpha_2 = \vec{\mathbf{a}}_1 \vec{\mathbf{a}}_3$$

$$II \quad \vec{a_2}\vec{a_1}\alpha_1 + \vec{a_2}\vec{a_2}\alpha_2 = \vec{a_2}\vec{a_3}$$

$$\alpha_{1} = \frac{\begin{bmatrix} \vec{a}_{1}\vec{a}_{3} & \vec{a}_{1}\vec{a}_{2} \\ \vec{a}_{2}\vec{a}_{3} & \vec{a}_{2}\vec{a}_{2} \end{bmatrix}}{\begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{2} \end{bmatrix}}$$

$$\alpha_{2} = \frac{\begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{3} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{3} \end{bmatrix}}{\begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{2} \end{bmatrix}}$$

$$I \quad \vec{a_1}\vec{a_1}\alpha_1 + \vec{a_1}\vec{a_2}\alpha_2 = \vec{a_1}\vec{a_3} \qquad I \quad \cdot \alpha_1$$
$$II \quad \vec{a_2}\vec{a_1}\alpha_1 + \vec{a_2}\vec{a_2}\alpha_2 = \vec{a_2}\vec{a_3} \qquad I \quad \cdot \alpha_2$$

$$\begin{bmatrix} \vec{a}_{1}\vec{a}_{1}\alpha_{1}^{2} + \vec{a}_{1}\vec{a}_{2}\alpha_{1}\alpha_{2} &= \vec{a}_{1}\vec{a}_{3}\alpha_{1} \\ \vec{a}_{2}\vec{a}_{1}\alpha_{1}\alpha_{2} + \vec{a}_{2}\vec{a}_{2}\alpha_{2}^{2} &= \vec{a}_{2}\vec{a}_{3}\alpha_{2} \end{bmatrix} + \frac{\vec{a}_{1}\vec{a}_{1}\alpha_{1}^{2} + 2\vec{a}_{1}\vec{a}_{2}\alpha_{1}\alpha_{2} + \vec{a}_{2}\vec{a}_{2}\alpha_{2}^{2} = \vec{a}_{1}\vec{a}_{3}\alpha_{1} + \vec{a}_{2}\vec{a}_{3}\alpha_{2} \end{bmatrix}$$

$$\begin{split} \vec{h}^{2} &= -\left(\vec{a}_{1}^{2}\alpha_{1}^{2} + 2\vec{a}_{1}\vec{a}_{2}\alpha_{1}\alpha_{2} + \vec{a}_{2}^{2}\alpha_{2}^{2}\right) + \vec{a}_{3}^{2} \\ \vec{h}^{2} &= -\left(\vec{a}_{1}\vec{a}_{3}\alpha_{1} + \vec{a}_{2}\vec{a}_{3}\alpha_{2}\right) + \vec{a}_{3}^{2} \\ \vec{h}^{2} &= -\vec{a}_{1}\vec{a}_{3}\alpha_{1} - \vec{a}_{2}\vec{a}_{3}\alpha_{2} + \vec{a}_{3}\vec{a}_{3} \\ \vec{h}^{2} &= -\vec{a}_{1}\vec{a}_{3} \frac{\left[\vec{a}_{1}\vec{a}_{3} & \vec{a}_{1}\vec{a}_{2}\right]}{\left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2}\right]} - \vec{a}_{2}\vec{a}_{3} \frac{\left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{3}\right]}{\left[\vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{2}\right]} + \vec{a}_{3}\vec{a}_{3} \\ \vec{l}^{2} \vec{h}^{2} &= -\left[\vec{a}_{1}\vec{a}_{3} & \vec{a}_{1}\vec{a}_{2}\right] \vec{a}_{1}\vec{a}_{3} - \left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{3}\right] \vec{a}_{2}\vec{a}_{3} + \left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2}\right] \vec{a}_{3}^{2} \\ \vec{l}^{2} \vec{h}^{2} &= -\left[\vec{a}_{1}\vec{a}_{3} & \vec{a}_{1}\vec{a}_{2}\right] \vec{a}_{1}\vec{a}_{3} - \left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{3}\right] \vec{a}_{2}\vec{a}_{3} + \left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2}\right] \vec{a}_{3}^{2} \\ \vec{l}^{2} \vec{a}_{1} & \vec{a}_{2}\vec{a}_{3}^{2}\right] \vec{a}_{1}\vec{a}_{3} - \left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{3}\right] \vec{a}_{2}\vec{a}_{3} + \left[\vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2}\right] \vec{a}_{3}^{2} \end{aligned}$$

Spaltenvertauschung, Übergang zur transponierten Matrix, Faktorvertauschung :

$$I_{3}^{2} = \begin{bmatrix} \vec{a}_{1}\vec{a}_{2} & \vec{a}_{1}\vec{a}_{3} \\ \vec{a}_{2}\vec{a}_{2} & \vec{a}_{2}\vec{a}_{3} \end{bmatrix} \vec{a}_{1}\vec{a}_{3} - \begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{3} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{3} \end{bmatrix} \vec{a}_{2}\vec{a}_{3} + \begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{2} \end{bmatrix} \vec{a}_{3}^{2}$$
$$I_{3}^{2} = \begin{bmatrix} \vec{a}_{1}\vec{a}_{2} & \vec{a}_{2}\vec{a}_{2} \\ \vec{a}_{3}\vec{a}_{1} & \vec{a}_{3}\vec{a}_{2} \end{bmatrix} \vec{a}_{1}\vec{a}_{3} - \begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2} \\ \vec{a}_{3}\vec{a}_{1} & \vec{a}_{3}\vec{a}_{2} \end{bmatrix} \vec{a}_{2}\vec{a}_{3} + \begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{2} \end{bmatrix} \vec{a}_{3}^{2}$$

Der rechts stehende Term ist die Determinante der Gramschen Matrix, entwickelt nach der 3. Spalte :

$$I_{3}^{2} = \begin{bmatrix} \vec{a}_{1}\vec{a}_{1} & \vec{a}_{1}\vec{a}_{2} & \vec{a}_{1}\vec{a}_{3} \\ \vec{a}_{2}\vec{a}_{1} & \vec{a}_{2}\vec{a}_{2} & \vec{a}_{2}\vec{a}_{3} \\ \vec{a}_{3}\vec{a}_{1} & \vec{a}_{3}\vec{a}_{2} & \vec{a}_{3}\vec{a}_{3} \end{bmatrix}$$

$$\begin{aligned} \mathbf{l}_{r} &= \mathbf{l}_{r-1} \cdot \mathbf{l} \mathbf{\tilde{h}} \mathbf{l} \text{ mit} \\ \mathbf{\tilde{h}} \perp \mathbf{\tilde{a}}_{1}, \dots, \mathbf{a}_{r-1}^{-1}, \quad \mathbf{\tilde{h}} = -(\alpha_{1}\mathbf{\tilde{a}}_{1} + \dots + \alpha_{r-1}\mathbf{a}_{r-1}^{-1}) + \mathbf{\tilde{a}}_{r} \\ \mathbf{l}_{r}^{2} &= \mathbf{l}_{r-1}^{2} \cdot \mathbf{\tilde{h}}^{2} \\ \mathbf{\tilde{h}}^{2} &= -(\alpha_{1}\mathbf{\tilde{a}}_{1} + \dots + \alpha_{r-1}\mathbf{\tilde{a}}_{r-1}^{-1})^{2} + \mathbf{\tilde{a}}_{r}^{2} \qquad \mathbf{Satz} \ \text{des Pythagoras} \\ \mathbf{\tilde{h}}^{2} &= -\left(\mathbf{\tilde{a}}_{1}^{2}\alpha_{1}^{2} + \sum_{1 \leq i \leq i \leq r-1} 2\mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{j}\alpha_{i}\alpha_{j} + \mathbf{\tilde{a}}_{r-1}^{2}\alpha_{r-1}^{2}\right) + \mathbf{\tilde{a}}_{r}^{2} \\ \mathbf{\tilde{a}}_{1}\mathbf{\tilde{h}} = \mathbf{0} \quad , \dots, \quad \mathbf{\tilde{a}}_{r-1}\mathbf{\tilde{h}} = \mathbf{0} \\ (1) \quad -\mathbf{\tilde{a}}_{1}\mathbf{\tilde{a}}_{1}\alpha_{1} - \dots -\mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{r-1}\alpha_{r-1} + \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{r} = \mathbf{0} \\ \vdots \\ (r-1) \quad -\mathbf{\tilde{a}}_{r-1}\mathbf{\tilde{a}}_{1}\alpha_{1} + \dots + \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{r-1}\alpha_{r-1} = \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i} \\ \vdots \\ (r-1) \quad \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{1}\alpha_{1} + \dots + \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i-1}\alpha_{r-1} = \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{r} \\ \vdots \\ (r-1) \quad \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\alpha_{1} + \dots + \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i-1}\alpha_{r-1} = \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i} \\ \vdots \\ (r-1) \quad \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\alpha_{1} + \dots + \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i-1}\alpha_{r-1} = \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i} \\ \vdots \\ (r-1) \quad \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\alpha_{1} + \dots + \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i-1}\alpha_{r-1} = \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i} \\ \vdots \\ (r-1) \quad \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\alpha_{1} + \dots + \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i-1}\alpha_{r-1} = \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i} \\ \vdots \\ (r-1) \quad \mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i}\mathbf{\tilde{a}}_{i-1}\mathbf{$$

(1)
$$\vec{a}_1 \vec{a}_1 \alpha_1 + \ldots + \vec{a}_1 \vec{a}_{r-1} \alpha_{r-1} = \vec{a}_1 \vec{a}_r \qquad I \qquad \alpha_1$$

Der Inhalt eines r-dimensionalen Parallelotops 6

(r-1)
$$\vec{a}_{r-1}\vec{a}_1\alpha_1$$
 + . . . + $\vec{a}_{r-1}\vec{a}_{r-1}\alpha_{r-1}$ = $\vec{a}_{r-1}\vec{a}_r$ I $\cdot \alpha_{r-1}$

.

(1)
$$\vec{a}_1 \vec{a}_1 {\alpha_1}^2 + \ldots + \vec{a}_1 \vec{a}_{r-1} \alpha_1 \alpha_{r-1} = \vec{a}_1 \vec{a}_r$$

.

(r-1)
$$\vec{a}_{r-1}\vec{a}_1\alpha_1\alpha_{r-1} + \dots + \vec{a}_{r-1}\vec{a}_{r-1}\alpha_{r-1}^2 = \vec{a}_{r-1}\vec{a}_r + \dots$$

$$\underline{\vec{a}_{1}^{2}\alpha_{1}^{2} + \sum_{1 \le i < j \le r-1} 2\vec{a}_{i}\vec{a}_{j}\alpha_{i}\alpha_{j} + \vec{a}_{r-1}^{2}\alpha_{r-1}^{2} = \vec{a}_{1}\vec{a}_{r}\alpha_{1} + \dots + \vec{a}_{r-1}\vec{a}_{r}\alpha_{r-1}}$$

$$\begin{split} \vec{h}^{2} &= - \left(\vec{a}_{1}^{2} \alpha_{1}^{2} + \sum_{1 \leq i \leq j \leq r-1} 2\vec{a}_{i}\vec{a}_{j}\alpha_{i}\alpha_{j} + \vec{a}_{r-1}^{2}\alpha_{r-1}^{2} \right) + \vec{a}_{r}^{2} \\ \vec{h}^{2} &= - \left(\vec{a}_{1}\vec{a}_{r}\alpha_{1} + \ldots + \vec{a}_{r-1}\vec{a}_{r}\alpha_{r-1} \right) + \vec{a}_{r}^{2} \\ \vec{h}^{2} &= - \vec{a}_{1}\vec{a}_{r}\alpha_{1} - \ldots - \vec{a}_{r-1}\vec{a}_{r}\alpha_{r-1} + \vec{a}_{r}^{2} \\ \vec{h}^{2} &= \sum_{i=1}^{r-1} - \vec{a}_{i}\vec{a}_{r}\alpha_{i} + \vec{a}_{r}^{2} \\ \vec{a}_{i}\vec{a}_{1} + \cdots + \vec{a}_{r}\vec{a}_{r-1} \\ \vec{a}_{i}\vec{a}_{1} + \cdots + \vec{a}_{r}\vec{a}_{r-1} \\ \vec{a}_{i}\vec{a}_{1} + \cdots + \vec{a}_{r}\vec{a}_{r-1} \\ \vec{a}_{r-1}\vec{a}_{1} + \cdots + \vec{a}_{r-1}\vec{a}_{r-1} \\ \vec{a}_{i}\vec{a}_{1} + \cdots + \vec{a}_{r-1}\vec{a}_{r-1} \\ \vec{a}_{i}\vec{a}_{i}\vec{a}_{i} + \vec{a}_{i}\vec{a}_{i-1} \\ \vec{a}_{i}\vec{a}_{i}\vec{a}_{i} + \vec{a}_{i}\vec{a}_{i-1} \\ \vec{a}_{i}\vec{a}_{i}\vec{a}_{i} + \vec{a}_{i}\vec{a}_{i-1} \\ \vec{a}_{i}\vec{a}_{i-1}\vec{a}_{i-1} \\ \vec{a}_{i}\vec{a}_{i}\vec{a}_{i-1} + \vec{a}_{i-1}\vec{a}_{i-1} \\ \vec{a}_{i}\vec{a}_{i-1}\vec{a}_{i-1} \\ \vec{a}_{i-1}\vec{a}_{i-1}\vec{a}_{i-1} \\ \vec{a}_{i-1}\vec{a}_{i-1}\vec{a}_{i-1} \\ \vec{a}_{i-1}\vec{a}_{i-1}\vec{a}_{i-1} \\ \vec{a}_{i-1}\vec{a}_{i-1} \\ \vec{a}_{i$$

Jetzt muss man wieder Umformungen vornehmen, nämlich Spaltenvertauschung, Übergang zur transponierten Matrix und Faktorvertauschung :

In der Matrix sei die r-1 -te Spalte modifiziert , und die Spaltennummerierung ist gegeben durch 1 , . . . r-2 , r .

	.								\vec{a}_1	ā,		
		•	•	•	•	•	•	•	•			
—		•	•	•	•	•	•	•			$\vec{a}_{r-1}\vec{a}$	ā,
		•			•		•	•	•			
	<u> </u>	•	•	•	•	•	•	•	ā _{r-}	_₁ả _r		

Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt, die Zeile mit der Nummer r-1 fehlt :

				•				
_	•			•		•	•	$\vec{a}_{r-1}\vec{a}_{r}$
	$\vec{a}_{r-2}\vec{a}_1$	•	•	•	•	•	$\vec{a}_{r-2}\vec{a}_{r-1}$	
	$\vec{a}_r \vec{a}_1$			•		•	ā _{r-2} ā _{r-1} ā _r ā _{r-1}	
							-	4

In der Matrix sei die r-2 -te Spalte modifiziert , und die Spaltennummerierung ist gegeben durch 1 , . . . r-3 , r , r-1 .

	·	•	•	•		•	$\vec{a}_1 \vec{a}_r$		
		•	•	•	•	•	•	•	
_				•		•		•	$\vec{a}_{r-2}\vec{a}_{r}$
		•		•	•	•	•	•	
		•	•	•	•	•	$\vec{a}_{r-1}\vec{a}_{r}$	•	

Die Spaltenvertauschung erzeugt die Vorzeichenänderung und die Spaltennummerierung 1, ... r-3, r-1, r. Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt die Zeile mit der Nummer r-2 fehlt:

In der Matrix sei die r-3 -te Spalte modifiziert , und die Spaltennummerierung ist gegeben durch 1 , . . . r-4 , r , r-2 , r-1 .

			•			$\vec{a}_1 \vec{a}_r$	•		
	•	•	•		•		٠	•	
_	•	•	•	•	•	•	•	•	$\vec{a}_{r-3}\vec{a}_{r}$
	•	•	•	•	•	•	•	•	
	•	•	•	•	•	$\vec{a}_{r-1}\vec{a}_{r}$	•	•	

Die 2-fache Spaltenvertauschung erzeugt keine Vorzeichenänderung und die Spaltennummerierung ist 1, ... r-4, r-2, r-1, r. Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt die Zeile mit der Nummer r-3 fehlt:

	•	•		•		•		
	•	•		•		•	•	
_	$\vec{a}_{r-4}\vec{a}_1$	•	•	•	•	•	$ec{a}_{r-4}ec{a}_{r-1} \ ec{a}_{r-1} \ ec{a}_{r-1}$	$\vec{a}_{r-3}\vec{a}_{r}$
	$\vec{a}_{r-2}\vec{a}_1$	•	•	•	•	•	$\vec{a}_{r-2}\vec{a}_{r-1}$	
	•	•	•	•	•	•	•	

Denkt man sich diesen Prozess fortgesetzt , erhält man auf der rechten Seite der Gleichung

				$\vec{a_1} \vec{a_r}$								$\vec{a_1} \vec{a_1}$		•				$\vec{a_1} \vec{a}_{r-1}$	1
<u>r – 1</u>	1	•	•	•	•	•	•	•	•				•	•	•	•	•	•	
$I_r^2 = \sum_{r=1}^{\infty}$	_	•	•		•	•	•	•	•	ā _i ā _r	+	•	•	•	•	•	•	•	a, a,
i=1	1	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	
			•	$\vec{a_{r-1}}\vec{a_r}$	•	•	•	•	•			$\vec{a_{r-1}}\vec{a_1}$	•	•	•	•	•	$\vec{a_{r-1}}\vec{a}_{r-1}$	

gerade die Determinante der Gramschen Matrix entwickelt nach der r-ten Spalte, also ist

							_→ → 1	
	$\vec{a_1} \vec{a_1}$	•	•	•	·	•	$\vec{a_1} \vec{a}_r$	
12	•	·	•	•	·	·	•	
$I_r =$	•	•	•	•	·	•	•	
	•	•	•	•	•	•	·	
	a _r a ₁	•	•	•	•	•	ā,ā,	
	•						•	

$\textbf{Das Parallelotop} \ \ P_n \ \ \subset \ \ \mathbb{R}^n$

$$\mathbf{I}_{n}^{2} = \begin{bmatrix} \mathbf{a}_{1} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \mathbf{a}_{1} \end{bmatrix} (\mathbf{\vec{a}}_{1} \cdot \cdots \cdot \mathbf{\vec{a}}_{n})$$

$$\mathbf{I}_{n}^{2} = \begin{bmatrix} \left(\mathbf{\vec{a}}_{1} \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{\vec{a}}_{n} \right)^{T} & \left(\mathbf{\vec{a}}_{1} \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{\vec{a}}_{n} \right) \end{bmatrix}$$

$$I_n^{\ 2} \ = \ \left[\begin{array}{cccc} \left(\vec{a}_1 \ \cdot \ \cdot \ \cdot \ \cdot \ \cdot \ \vec{a}_n \right)^T \end{array} \right] \quad \left[\begin{array}{ccccc} \vec{a}_1 \ \cdot \ \cdot \ \cdot \ \cdot \ \vec{a}_n \end{array} \right]$$

$$I_n^2 = \begin{bmatrix} \vec{a}_1 & \cdot & \cdot & \cdot & \cdot & \vec{a}_n \end{bmatrix} \begin{bmatrix} \vec{a}_1 & \cdot & \cdot & \cdot & \cdot & \vec{a}_n \end{bmatrix}$$

$$I_n^2 = \left[\begin{array}{ccc} \vec{a}_1 & \cdot & \cdot & \cdot & \cdot & \vec{a}_n \end{array} \right]^2$$

$$I_n = \left| \left[\vec{a}_1 \cdot \cdot \cdot \cdot \cdot \vec{a}_n \right] \right|$$

Betrag der Determinante der aufspannenden Vektoren