Der Inhalt eines r-dimensionalen Parallelotops im \mathbb{R}^{n}

Die Gramsche Determinante

Arno Fehringer

Dezember 2021

Abstract

Voraussetzungen : Um das vorliegende Skriptum zu verstehen, benötigt man Kenntnisse über das Skalarprodukt von Vektoren im \mathbb{R}^{n}, die Entwicklung und Eigenschaften der Determinantenfunktion sowie die Darstellung der Lösungen linearer Gleichungssysteme durch Determinanten.

Quellen:

Deiser, Oliver ; Lasser, Caroline : Erste Hilfe in Linearer Algebra ; März 2021 https://www.aleph1.info/?call=Puc\&permalink=ela1

FriedI, Stefan : Geometrie für Lehramt Gymnasium ; Uni Regensburg SS 2019 http://www.mathematik.uni-regensburg.de/friedl/papers/2019_geometrie-fuer-lehramt

Bemerkung : In beiden Quellen sind die Details der Herleitung der Inhaltsfomel für Parallelotope nicht ausgeführt. Deshalb habe ich das vorliegende Skriptum erstellt.

Definition:

Im n-dimensionalen Raum \mathbb{R}^{n} seien die linear unabhängigen Vektoren $\vec{a}_{1}, \ldots, \vec{a}_{r}$, mit $1 \leq r \leq n$ sowie der Vektor \vec{t} gegeben.

Dann heißt die Menge

$$
P_{r}=\left\{\vec{x} \in \mathbb{R}^{n} \quad \mid \quad \vec{x}=\vec{t}+\sum_{i=1}^{r} \lambda_{i} \vec{a}_{i}, 0 \leq \lambda_{i} \leq 1 \quad i=1, \ldots, r\right\}
$$

das von den Vektoren $\vec{a}_{1}, \ldots, \vec{a}_{r}$, erzeugte r-dimensionale Parallelotop .

Der r-dimensionale Inhalt I_{r} des Parallelotops P_{r} ist induktiv definiert durch:

$$
\begin{aligned}
& I_{1}:=\left|\vec{a}_{1}\right| \\
& I_{r+1}:=\left|I_{r} \cdot\right| \vec{h} \mid \quad \text { mit } \vec{h} \perp \vec{a}_{1}, \ldots, \vec{a}_{r}
\end{aligned}
$$

Das Parallelotop $P_{2} \subset \mathbb{R}^{n}, \quad 2 \leq n$

```
\(I_{2}=I_{1} \cdot|\vec{h}|\) mit \(\vec{h} \perp \vec{a}_{1}, \quad \vec{h}=-\alpha_{1} \vec{a}_{1}+\vec{a}_{2}, \quad I_{1}=\left|\vec{a}_{1}\right|\)
\(\mathrm{I}_{2}{ }^{2}=\mathrm{I}_{1}{ }^{2} \cdot \overrightarrow{\mathrm{~h}}^{2}\)
\(I_{2}{ }^{2}=\vec{a}_{1}{ }^{2} \cdot \vec{h}^{2}\)
\(\overrightarrow{\mathrm{h}}^{2}=-\left(\alpha_{1} \overrightarrow{\mathrm{a}}_{1}\right)^{2}+\overrightarrow{\mathrm{a}}_{2}{ }^{2}\)
    Satz des Pythagoras
\(\overrightarrow{\mathrm{h}}^{2}=-\overrightarrow{\mathrm{a}}_{1}{ }^{2} \alpha_{1}^{2}+\overrightarrow{\mathrm{a}}_{2}^{2}\)
\(\overrightarrow{\mathrm{h}}^{2}=-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}{ }^{2}+\overrightarrow{\mathrm{a}}_{2}{ }^{2}\)
```

$$
\begin{aligned}
& \overrightarrow{a_{1}} \overrightarrow{\mathrm{~h}}=0 \\
& -\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}+\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}=0 \\
& \alpha_{1}=\frac{\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}}{\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& -\vec{a}_{1} \vec{a}_{1} \alpha_{1}+\vec{a}_{1} \vec{a}_{2}=0 \quad \text { I } \cdot \alpha_{1} \\
& -\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+\vec{a}_{1} \vec{a}_{2} \alpha_{1}=0 \\
& -\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}=-\vec{a}_{1} \vec{a}_{2} \alpha_{1} \\
& \hline
\end{aligned}
$$

$$
\overrightarrow{\mathrm{h}}^{2}=-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}^{2}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\overrightarrow{\mathrm{h}}^{2}=-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{1}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\overrightarrow{\mathrm{h}}^{2}=-\vec{a}_{1} \overrightarrow{\mathrm{a}}_{2} \frac{\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}}{\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1}}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\overrightarrow{\mathrm{h}}^{2}=-\frac{\left(\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}\right)^{2}}{\overrightarrow{\mathrm{a}}_{1} \vec{a}_{1}}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\overrightarrow{\mathrm{a}}_{1}^{2} \overrightarrow{\mathrm{~h}}^{2}=-\left(\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}\right)^{2}+\overrightarrow{\mathrm{a}}_{1}^{2} \overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
I_{2}^{2}=\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]
$$

$I_{3}=I_{2} \cdot|\vec{h}|$ mit $\vec{h} \perp \vec{a}_{1}, \vec{a}_{2}, \quad \vec{h}=-\left(\alpha_{1} \vec{a}_{1}+\alpha_{2} \vec{a}_{2}\right)+\vec{a}_{3}$
$\mathrm{I}_{3}{ }^{2}=\mathrm{I}_{2}{ }^{2} \cdot \overrightarrow{\mathrm{~h}}^{2}$
$\overrightarrow{\mathrm{h}}^{2}=-\left(\alpha_{1} \overrightarrow{\mathrm{a}}_{1}+\alpha_{2} \overrightarrow{\mathrm{a}}_{2}\right)^{2}+\overrightarrow{\mathrm{a}}_{3}^{2}$
Satz des Pythagoras
$\underline{\overrightarrow{\mathrm{h}}^{2}=-\left(\overrightarrow{\mathrm{a}}_{1}{ }^{2} \alpha_{1}^{2}+2 \overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{1} \alpha_{2}+\overrightarrow{\mathrm{a}}_{2}^{2} \alpha_{2}^{2}\right)+\overrightarrow{\mathrm{a}}_{3}^{2}}$
$\vec{a}_{1} \vec{h}=0 \quad, \quad \vec{a}_{2} \vec{h}=0$
I $-\vec{a}_{1} \vec{a}_{1} \alpha_{1}-\vec{a}_{1} \vec{a}_{2} \alpha_{2}+\vec{a}_{1} \vec{a}_{3}=0$
II $\quad-\vec{a}_{1} \vec{a}_{2} \alpha_{1}-\vec{a}_{2} \vec{a}_{2} \alpha_{2}+\vec{a}_{2} \vec{a}_{3}=0$
$1 \quad \overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}+\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{2}=\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{3}$
II $\quad \vec{a}_{2} \vec{a}_{1} \alpha_{1}+\vec{a}_{2} \vec{a}_{2} \alpha_{2}=\vec{a}_{2} \vec{a}_{3}$

$$
\alpha_{1}=\frac{\left[\begin{array}{cc}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}
$$

$$
\alpha_{2}=\frac{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}
$$

$I \quad \vec{a}_{1} \vec{a}_{1} \alpha_{1}+\vec{a}_{1} \vec{a}_{2} \alpha_{2}=\vec{a}_{1} \vec{a}_{3} \quad$ I $\cdot \alpha_{1}$
II $\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}+\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{2} \alpha_{2}=\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{3} \quad$ I $\cdot \alpha_{2}$

I $\quad \vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+\vec{a}_{1} \vec{a}_{2} \alpha_{1} \alpha_{2}=\vec{a}_{1} \vec{a}_{3} \alpha_{1}$
II $\quad \vec{a}_{2} \vec{a}_{1} \alpha_{1} \alpha_{2}+\vec{a}_{2} \vec{a}_{2} \alpha_{2}^{2}=\vec{a}_{2} \vec{a}_{3} \alpha_{2}$

$\underline{\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+2 \vec{a}_{1} \vec{a}_{2} \alpha_{1} \alpha_{2}+\vec{a}_{2} \vec{a}_{2} \alpha_{2}^{2}=\vec{a}_{1} \vec{a}_{3} \alpha_{1}+\vec{a}_{2} \vec{a}_{3} \alpha_{2}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{h}}^{2}=-\left(\overrightarrow{\mathrm{a}}_{1}{ }^{2} \alpha_{1}^{2}+2 \overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{1} \alpha_{2}+\overrightarrow{\mathrm{a}}_{2}{ }^{2} \alpha_{2}^{2}\right)+\overrightarrow{\mathrm{a}}_{3}{ }^{2} \\
& \vec{h}^{2}=-\left(\vec{a}_{1} \vec{a}_{3} \alpha_{1}+\vec{a}_{2} \vec{a}_{3} \alpha_{2}\right)+\vec{a}_{3}{ }^{2} \\
& \overrightarrow{\mathrm{~h}}^{2}=-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{3} \alpha_{1}-\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{3} \alpha_{2}+\overrightarrow{\mathrm{a}}_{3} \overrightarrow{\mathrm{a}}_{3} \\
& \vec{h}^{2}=-\vec{a}_{1} \vec{a}_{3} \frac{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}-\vec{a}_{2} \vec{a}_{3} \frac{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}+\vec{a}_{3} \vec{a}_{3} \\
& I_{2}{ }^{2} \vec{h}^{2}=-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{3}{ }^{2} \\
& I_{3}^{2}=-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{3}^{2}
\end{aligned}
$$

Spaltenvertauschung, Übergang zur transponierten Matrix, Faktorvertauschung :

$$
\begin{aligned}
& I_{3}^{2}=\left[\begin{array}{ll}
\overrightarrow{a_{1}} \vec{a}_{2} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{2} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{3}^{2} \\
& I_{3}^{2}=\left[\begin{array}{ll}
\overrightarrow{a_{1}} \vec{a}_{2} & \vec{a}_{2} \vec{a}_{2} \\
\vec{a}_{3} \vec{a}_{1} & \vec{a}_{3} \vec{a}_{2}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\overrightarrow{a_{1}} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{3} \vec{a}_{1} & \vec{a}_{3} \vec{a}_{2}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \overrightarrow{a_{1}} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{3}^{2}
\end{aligned}
$$

Der rechts stehende Term ist die Determinante der Gramschen Matrix, entwickelt nach der 3. Spalte :

$$
I_{3}^{2}=\left[\begin{array}{lll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2} & \vec{a}_{2} \vec{a}_{3} \\
\vec{a}_{3} \vec{a}_{1} & \vec{a}_{3} \vec{a}_{2} & \vec{a}_{3} \vec{a}_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& I_{r}=I_{r-1} \cdot|\vec{h}| \text { mit } \\
& \vec{h} \perp \vec{a}_{1}, \ldots, \vec{a}_{r-1}, \quad \vec{h}=-\left(\alpha_{1} \vec{a}_{1}+\ldots+\alpha_{r-1} \vec{a}_{r-1}\right)+\vec{a}_{r} \\
& I_{r}^{2}=I_{r-1}^{2} \cdot \vec{h}^{2} \\
& \vec{h}^{2}=-\left(\alpha_{1} \vec{a}_{1}+\ldots+\alpha_{r-1} \vec{a}_{r-1}\right)^{2}+\vec{a}_{r}^{2} \quad \text { Satz des Pythagoras } \\
& \vec{h}^{2}=-\left(\vec{a}_{1}^{2} \alpha_{1}^{2}+\sum_{1 \leq i<j \leq r-1} 2 \vec{a}_{i} \vec{a}_{j} \alpha_{i} \alpha_{j}+\vec{a}_{r-1}{ }^{2} \alpha_{r-1}^{2}\right)+\vec{a}_{r}^{2}
\end{aligned}
$$

$$
\overrightarrow{a_{1}} \vec{h}=0 \quad, \ldots, \quad \overrightarrow{a_{r-1}} \vec{h}=0
$$

$$
\begin{equation*}
-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}-\ldots-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \alpha_{\mathrm{r}-1}+\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}}=0 \tag{1}
\end{equation*}
$$

(r-1) $\quad-\vec{a}_{r-1} \vec{a}_{1} \alpha_{1}-\ldots-\vec{a}_{r-1} \vec{a}_{r-1} \alpha_{r-1}+\vec{a}_{1} \vec{a}_{r}=0$

$$
\begin{equation*}
\vec{a}_{1} \vec{a}_{1} \alpha_{1}+\ldots+\vec{a}_{1} \vec{a}_{r-1} \alpha_{r-1}=\vec{a}_{1} \vec{a}_{r} \tag{1}
\end{equation*}
$$

$(\mathrm{r}-1) \quad \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}+\ldots+\overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \alpha_{\mathrm{r}-1}=\overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}}$

$$
\begin{equation*}
\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}+\underset{\text { Der Inhalt eines r-dimensionalen Parallelotops }}{+\ldots}+\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \alpha_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}} \tag{1}
\end{equation*}
$$

$$
\mathrm{I} \cdot \alpha_{1}
$$

(r-1) $\quad \vec{a}_{r-1} \vec{a}_{1} \alpha_{1}+\ldots+\vec{a}_{r-1} \vec{a}_{r-1} \alpha_{r-1} \quad=\vec{a}_{r-1} \vec{a}_{r} \quad$ I $\cdot \alpha_{r-1}$

$$
\left.\begin{array}{l}
\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+\ldots+\vec{a}_{1} \vec{a}_{r-1} \alpha_{1} \alpha_{r-1}=\vec{a}_{1} \vec{a}_{r} \tag{1}\\
\vec{a}_{r-1} \vec{a}_{1} \alpha_{1} \alpha_{r-1}+, \ldots,+\vec{a}_{r-1} \vec{a}_{r-1} \alpha_{r-1}^{2}=\vec{a}_{r-1} \vec{a}_{r}
\end{array}\right]+
$$

$$
\underline{\overrightarrow{\mathrm{a}}_{1}{ }^{2} \alpha_{1}^{2}+\sum_{1 \leq i<j \leq r-1} 2 \vec{a}_{i} \vec{a}_{j} \alpha_{i} \alpha_{\mathrm{j}}+\overrightarrow{\mathrm{a}}_{\mathrm{r}-1}{ }^{2} \alpha_{\mathrm{r}-1}^{2}=\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}} \alpha_{1}+\ldots+\overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}} \alpha_{\mathrm{r}-1}}
$$

$$
\begin{aligned}
& \vec{h}^{2}=-\left(\vec{a}_{1}^{2} \alpha_{1}^{2}+\sum_{1 \leq i<j \leq r-1} 2 \vec{a}_{i} \vec{a}_{j} \alpha_{i} \alpha_{j}+\vec{a}_{r-1}^{2} \alpha_{r-1}^{2}\right)+\vec{a}_{r}^{2} \\
& \vec{h}^{2}=-\left(\vec{a}_{1} \vec{a}_{r} \alpha_{1}+\ldots+\vec{a}_{r-1} \vec{a}_{r} \alpha_{r-1}\right)+\vec{a}_{r}^{2} \\
& \vec{h}^{2}=-\vec{a}_{1} \vec{a}_{r} \alpha_{1}-\ldots-\vec{a}_{r-1} \vec{a}_{r} \alpha_{r-1}+\vec{a}_{r}^{2} \\
& \vec{h}^{2}=\sum_{i=1}^{r-1}-\vec{a}_{i} \vec{a}_{r} \alpha_{i}+\vec{a}_{r}^{2}
\end{aligned}
$$

Nach Voraussetzung ist $I_{r-1}{ }^{2}=\left[\begin{array}{lllllll}\overrightarrow{a_{1}} & \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & & \cdot & a_{1} & \vec{a}_{r-1} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \overrightarrow{a_{r-1}} & \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{r-1} & \vec{a}_{r-1}\end{array}\right]$, so dass folgt :

Jetzt muss man wieder Umformungen vornehmen, nämlich Spaltenvertauschung, Übergang zur transponierten Matrix und Faktorvertauschung :

In der Matrix sei die r-1 -te Spalte modifiziert, und die Spaltennummerierung ist gegeben durch 1 , . . $r-2, r$.

$$
-\left[\begin{array}{llllllll}
\cdot & \vec{a}_{1} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \vec{a}_{r-1} \\
r & & & & & & \vec{a}_{\mathrm{r}}
\end{array}\right] \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}}
$$

Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt, die Zeile mit der Nummer r-1 fehlt:

$$
-\left[\begin{array}{lllllll}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \vec{a}_{\mathrm{r}-1} \\
\overrightarrow{\mathrm{a}}_{\mathrm{r}} & \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\vec{a}_{\mathrm{r}} & \overrightarrow{\mathrm{a}}_{\mathrm{r}-1}
\end{array}\right] \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}}
$$

In der Matrix sei die r-2 -te Spalte modifiziert , und die Spaltennummerierung ist gegeben durch $1, \ldots$.

$$
-\left[\begin{array}{lllllllll}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{1} & \vec{a}_{\mathrm{r}} & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{\mathrm{a}-2} \vec{a}_{\mathrm{a}} & \cdot
\end{array} \overrightarrow{\mathrm{a}}_{\mathrm{r}}\right.
$$

Die Spaltenvertauschung erzeugt die Vorzeichenänderung und die Spaltennummerierung 1 , . . r-3 , r-1 , r . Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt die Zeile mit der Nummer r-2 fehlt:
$\left[\begin{array}{lllllll}\cdot & & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vec{a}_{\mathrm{a}-2} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \\ \overrightarrow{\mathrm{a}}_{\mathrm{r}} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{\mathrm{r}} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1}\end{array}\right] \overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{\mathrm{r}}$

In der Matrix sei die r-3 -te Spalte modifiziert, und die Spaltennummerierung ist gegeben durch 1 , .. r-4, r, r-2, r-1.

$$
-\left[\begin{array}{lllllllll}
\cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{1} & \vec{a}_{\mathrm{r}} & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{\mathrm{r}-3} \vec{a}_{\mathrm{r}-1} & \cdot & \vec{a}_{\mathrm{r}} & \cdot
\end{array}\right]
$$

Die 2-fache Spaltenvertauschung erzeugt keine Vorzeichenänderung und die Spaltennummerierung ist $1, \ldots r-4, r-2, r-1, r$. Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt die Zeile mit der Nummer r-3 fehlt:

$$
-\left[\begin{array}{lllllll}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\overrightarrow{\mathrm{a}}_{\mathrm{r}-4} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-4} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \\
\overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array} \overrightarrow{\mathrm{a}}_{\mathrm{r}-3} \overrightarrow{\mathrm{a}}_{\mathrm{r}}\right.
$$

Denkt man sich diesen Prozess fortgesetzt, erhält man auf der rechten Seite der Gleichung
gerade die Determinante der Gramschen Matrix entwickelt nach der r-ten Spalte, also ist

Das Parallelotop $P_{n} \subset \mathbb{R}^{n}$

$$
I_{n}^{2}=\left[\begin{array}{llllll}
\vec{a}_{1} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & a_{1} & \vec{a}_{n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\vec{a}_{n} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\vec{a}_{n} \vec{a}_{n}
\end{array}\right]
$$

$$
\mathrm{I}_{\mathrm{n}}{ }^{2}=\left[(\begin{array} { l }
{ \vec { a } _ { 1 } } \\
{ \cdot \vec { a } _ { 1 } }
\end{array}) \left(\begin{array}{lllll}
\vec{a}_{1} & \cdots & & & \\
\end{array}\right.\right.
$$

$$
\begin{aligned}
& I_{n}^{2}=\left[\left(\vec{a}_{1} \cdot \cdots \cdot \vec{a}_{n}\right)^{\top}\left(\vec{a}_{1} \cdot \cdots \cdot \vec{a}_{n}\right)\right] \\
& I_{n}^{2}=\left[\left(\vec{a}_{1} \cdot \cdots \cdot \vec{a}_{n}\right)^{\top}\right]\left[\vec{a}_{1} \cdot \cdots \cdot \vec{a}_{n}\right] \\
& I_{n}^{2}=\left[\vec{a}_{1} \cdot \cdots \vec{a}_{n}\right]\left[\vec{a}_{1} \cdots \cdots \vec{a}_{n}\right] \\
& I_{n}^{2}=\left[\vec{a}_{1} \cdot \cdots \cdot \vec{a}_{n}\right]^{2}
\end{aligned}
$$

$$
I_{n}=\left|\left[\vec{a}_{1} \cdot \cdots \cdot \vec{a}_{n}\right]\right|
$$

Betrag der Determinante der aufspannenden Vektoren

