Der Inhalt eines r-dimensionalen Simplex im \mathbb{R}^{n}

Die Gramsche Determinante

Arno Fehringer

Dezember 2021

Quellen:

Fehringer, Arno : Der Inhalt eines r-dimensionalen Parallelotops; Dezember 2021 https://mathematikgarten.hpage.com/get file.php?id=34766457\&vnr=574474

Definition:

Im n-dimensionalen Raum \mathbb{R}^{n} seien die linear unabhängigen Vektoren $\vec{a}_{1}, \ldots, \vec{a}_{r}$, mit $1 \leq r \leq n$ sowie der Vektor $\overrightarrow{\mathfrak{t}}$ gegeben.

Dann heißt die Menge

$$
S_{r}=\left\{\vec{x} \in \mathbb{R}^{n} \quad \mid \quad \vec{x}=\vec{t}+\sum_{i=1}^{r} \lambda_{i} \vec{a}_{i} \quad, \quad 0 \leq \lambda_{i} \leq 1 \quad, \quad i=1, \ldots, r \quad, \quad \sum_{i=1}^{r} \lambda_{i} \leq 1\right\}
$$

das von den Vektoren $\vec{a}_{1}, \ldots, \vec{a}_{r}$, erzeugte r-dimensionale Simplex .

Der r-dimensionale Inhalt I_{r} des Simplex S_{r} ist induktiv definiert durch:
$I_{1}:=\left|\vec{a}_{1}\right|$
$I_{r+1}:=\frac{1}{r+1} I_{r} \cdot|\vec{H}| \quad$ mit $\vec{H} \perp \vec{a}_{1}, \ldots, \vec{a}_{r}$

Jetzt besteht Klärungsbedarf !

Warum die Bedingung $\sum_{i=1}^{r} \lambda_{i} \leq 1 \quad ?$
Woher kommt die Inhaltsdefinition?

Die Punktmenge $\mathrm{S}_{2}=\mathrm{S}_{2}\left(\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}\right)$:
Zu jedem Punkt x in $S_{2}=S_{2}\left(\vec{a}_{1} \vec{a}_{2}\right)$ gibt es genau ein v mit $0 \leq v \leq 1$ und einen Vektor $v \overrightarrow{\mathrm{x}}$, so dass Folgendes gilt :

$$
\begin{aligned}
& v \overrightarrow{\mathrm{x}}=v \overrightarrow{\mathrm{a}}_{1}+v \lambda_{2}\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right) \\
& v \overrightarrow{\mathrm{x}}=v \overrightarrow{\mathrm{a}}_{1}+v \lambda_{2} \overrightarrow{\mathrm{a}}_{2}-v \lambda_{2} \overrightarrow{\mathrm{a}}_{1} \\
& v \overrightarrow{\mathrm{x}}=v\left(1-\lambda_{2}\right) \overrightarrow{\mathrm{a}}_{1}+v \lambda_{2} \overrightarrow{\mathrm{a}}_{2}
\end{aligned}
$$

$$
v \overrightarrow{\mathrm{x}}=v \lambda_{1} \vec{a}_{1}+v \lambda_{2} \overrightarrow{\mathrm{a}}_{2} \quad \text { mit } \quad v \lambda_{1}+v \lambda_{2}=v\left(\lambda_{1}+\lambda_{2}\right)=v \leq 1
$$

Die Punktmenge $S_{3}=S_{3}\left(\vec{a}_{1} \overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{2}\right)$:
Zu jedem Punkt x in $S_{3}=S_{3}\left(\vec{a}_{1} \vec{a}_{2} \vec{a}_{2}\right)$ gibt es genau ein v mit $0 \leq v \leq 1$ und einen Vektor $v \vec{x}$, so dass Folgendes gilt :

$$
\begin{aligned}
v \overrightarrow{\mathrm{x}} & =v \overrightarrow{\mathrm{a}}_{1}+v \lambda_{2}\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right)+v \lambda_{3}\left(\overrightarrow{\mathrm{a}}_{3}-\overrightarrow{\mathrm{a}}_{1}\right) \\
v \overrightarrow{\mathrm{x}} & =v \overrightarrow{\mathrm{a}}_{1}+v \lambda_{2} \overrightarrow{\mathrm{a}}_{2}-v \lambda_{2} \overrightarrow{\mathrm{a}}_{1}+v \lambda_{3} \overrightarrow{\mathrm{a}}_{3}-v \lambda_{3} \overrightarrow{\mathrm{a}}_{1} \\
v \overrightarrow{\mathrm{x}} & =v\left(1-\lambda_{2}-\lambda_{3}\right) \overrightarrow{\mathrm{a}}_{1}+v \lambda_{2} \overrightarrow{\mathrm{a}}_{2}+v \lambda_{3} \overrightarrow{\mathrm{a}}_{3} \\
v \overrightarrow{\mathrm{x}} & =v \lambda_{1} \overrightarrow{\mathrm{a}}_{1}+v \lambda_{2} \overrightarrow{\mathrm{a}}_{2}+v \lambda_{3} \overrightarrow{\mathrm{a}}_{3} \text { mit } \quad v \lambda_{1}+v \lambda_{2}+v \lambda_{3}=v \leq 1
\end{aligned}
$$

Wegen der Ähnlichkeitssätze gilt :

$$
\begin{array}{ll}
\frac{I_{2}(h)}{I_{2}}=\left(\frac{H-h}{H}\right)^{2}, \cdots \cdots, I_{r}(h) \\
I_{r}(h)=\left(\frac{H-h}{H}\right)^{r} \\
I_{3}=I_{0}^{H} I_{2}(h) d h & I_{r}(h)=I_{r}\left(\frac{H-h}{H}\right)^{r} \\
I_{3}=\int_{0}^{H} I_{2}\left(\frac{H-h}{H}\right)^{2} d h & I_{r+1}=\int_{0}^{H} I_{r}(h) d h \\
I_{3}=\int_{0}^{H} \frac{I_{2}}{H^{2}}(H-h)^{2} d h & I_{r+1}=\int_{0}^{H} I_{r}\left(\frac{H-h}{H}\right)^{r} d h \\
I_{3}=\left[-\frac{1}{3} \frac{I_{2}}{H^{2}}(H-h)^{3}\right]_{0}^{H} \frac{I_{r}}{H^{r}}(H-h)^{r} d h \\
I_{3}=-\left(-\frac{1}{3} \frac{I_{2}}{H^{2}}(H-0)^{3}\right) & I_{r+1}=\left[\frac{1}{r+1} \frac{I_{r}}{H^{r}}(H-h)^{r+1}\right]_{0}^{H} \\
I_{3}=\frac{1}{3} I_{3} H
\end{array}
$$

Das Simplex $S_{2} \subset \mathbb{R}^{n}, \quad 2 \leq n$

$$
\begin{aligned}
& I_{2}=\frac{1}{2} I_{1} \cdot|\vec{H}| \text { mit } \vec{H} \perp \vec{a}_{1}, \vec{H}=-\alpha_{1} \vec{a}_{1}+\vec{a}_{2}, I_{1}=\left|\vec{a}_{1}\right| \\
& I_{2}^{2}=\left(\frac{1}{2}\right)^{2} I_{1}^{2} \cdot \vec{H}^{2} \\
& I_{2}^{2}=\left(\frac{1}{2}\right)^{2} \vec{a}_{1}{ }^{2} \cdot \vec{H}^{2} \\
& \vec{H}^{2}=-\left(\alpha_{1} \vec{a}_{1}\right)^{2}+\vec{a}_{2}^{2} \quad \text { Satz des Pythagoras } \\
& \vec{H}^{2}=-\vec{a}_{1}{ }^{2} \alpha_{1}^{2}+\vec{a}_{2}^{2} \\
& \vec{H}^{2}=-\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+\overrightarrow{\mathrm{a}}_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}_{1} \vec{H}=0 \\
& -\vec{a}_{1} \vec{a}_{1} \alpha_{1}+\vec{a}_{1} \vec{a}_{2}=0 \\
& \alpha_{1}=\frac{\vec{a}_{1} \vec{a}_{2}}{\vec{a}_{1} \vec{a}_{1}} \\
& -\vec{a}_{1} \vec{a}_{1} \alpha_{1}+\vec{a}_{1} \vec{a}_{2}=0 \quad \text { I } \cdot \alpha_{1} \\
& -\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+\vec{a}_{1} \vec{a}_{2} \alpha_{1}=0 \\
& -\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}=-\vec{a}_{1} \vec{a}_{2} \alpha_{1}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{H}}^{2}=-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}^{2}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\overrightarrow{\mathrm{H}}^{2}=-\vec{a}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{1}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\overrightarrow{\mathrm{H}}^{2}=-\vec{a}_{1} \overrightarrow{\mathrm{a}}_{2} \frac{\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}}{\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1}}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\overrightarrow{\mathrm{H}}^{2}=-\frac{\left(\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}\right)^{2}}{\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1}}+\overrightarrow{\mathrm{a}}_{2}^{2}
$$

$$
\left(\frac{1}{2}\right)^{2} \overrightarrow{\mathrm{a}}_{1}^{2} \overrightarrow{\mathrm{H}}^{2}=\left(\frac{1}{2}\right)^{2}\left(-\left(\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2}\right)^{2}+\overrightarrow{\mathrm{a}}_{1}^{2} \overrightarrow{\mathrm{a}}_{2}^{2}\right)
$$

$$
I_{2}^{2}=\left(\frac{1}{2}\right)^{2}\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \left.I_{3}=\frac{1}{3} I_{2} \cdot I \vec{H} \right\rvert\, \text { mit } \vec{H} \perp \vec{a}_{1}, \vec{a}_{2}, \quad \vec{H}=-\left(\alpha_{1} \vec{a}_{1}+\alpha_{2} \vec{a}_{2}\right)+\overrightarrow{\mathrm{a}}_{3} \\
& I_{3}^{2}=\left(\frac{1}{3}\right)^{2} I_{2}^{2} \cdot \vec{H}^{2} \\
& \vec{H}^{2}=-\left(\alpha_{1} \vec{a}_{1}+\alpha_{2} \vec{a}_{2}\right)^{2}+\vec{a}_{3}^{2} \\
& \overrightarrow{\mathrm{H}}^{2}=-\left(\overrightarrow{\mathrm{a}}_{1}^{2} \alpha_{1}^{2}+2 \overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{1} \alpha_{2}+\overrightarrow{\mathrm{a}}_{2}^{2} \alpha_{2}^{2}\right)+\overrightarrow{\mathrm{a}}_{3}^{2}
\end{aligned} \text { Satz des Pythagoras } \quad \text { ? }
$$

$$
\vec{a}_{1} \vec{H}=0 \quad, \quad \vec{a}_{2} \overrightarrow{\mathrm{H}}=0
$$

$$
\text { I }-\vec{a}_{1} \vec{a}_{1} \alpha_{1}-\vec{a}_{1} \vec{a}_{2} \alpha_{2}+\vec{a}_{1} \vec{a}_{3}=0
$$

$$
\text { II } \quad-\vec{a}_{1} \vec{a}_{2} \alpha_{1}-\vec{a}_{2} \vec{a}_{2} \alpha_{2}+\vec{a}_{2} \vec{a}_{3}=0
$$

I $\quad \overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}+\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{2}=\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{3}$
II $\quad \vec{a}_{2} \vec{a}_{1} \alpha_{1}+\vec{a}_{2} \vec{a}_{2} \alpha_{2}=\vec{a}_{2} \vec{a}_{3}$

$$
\alpha_{1}=\frac{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}
$$

$$
\alpha_{2}=\frac{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}
$$

$1 \quad \vec{a}_{1} \vec{a}_{1} \alpha_{1}+\vec{a}_{1} \vec{a}_{2} \alpha_{2}=\vec{a}_{1} \vec{a}_{3} \quad$ I $\cdot \alpha_{1}$
II $\vec{a}_{2} \vec{a}_{1} \alpha_{1}+\vec{a}_{2} \vec{a}_{2} \alpha_{2}=\vec{a}_{2} \vec{a}_{3} \quad$ I $\cdot \alpha_{2}$

I $\quad \vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+\vec{a}_{1} \vec{a}_{2} \alpha_{1} \alpha_{2}=\vec{a}_{1} \vec{a}_{3} \alpha_{1}$
II $\left.\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{1} \alpha_{1} \alpha_{2}+\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{2} \alpha_{2}^{2}=\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{3} \alpha_{2}\right]+$

$$
\underline{\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+2 \vec{a}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{1} \alpha_{2}+\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{2} \alpha_{2}^{2}=\overrightarrow{\mathrm{a}}_{1} \vec{a}_{3} \alpha_{1}+\overrightarrow{\mathrm{a}}_{2} \vec{a}_{3} \alpha_{2}}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{H}}^{2}=-\left(\overrightarrow{\mathrm{a}}_{1}{ }^{2} \alpha_{1}^{2}+2 \overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{2} \alpha_{1} \alpha_{2}+\overrightarrow{\mathrm{a}}_{2}{ }^{2} \alpha_{2}^{2}\right)+\overrightarrow{\mathrm{a}}_{3}{ }^{2} \\
& \overrightarrow{\mathrm{H}}^{2}=-\left(\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{3} \alpha_{1}+\overrightarrow{\mathrm{a}}_{2} \overrightarrow{\mathrm{a}}_{3} \alpha_{2}\right)+\overrightarrow{\mathrm{a}}_{3}{ }^{2} \\
& \vec{H}^{2}=-\vec{a}_{1} \vec{a}_{3} \alpha_{1}-\vec{a}_{2} \vec{a}_{3} \alpha_{2}+\vec{a}_{3} \vec{a}_{3} \\
& \vec{H}^{2}=-\vec{a}_{1} \vec{a}_{3} \frac{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}-\vec{a}_{2} \vec{a}_{3} \frac{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right]}{\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right]}+\vec{a}_{3} \vec{a}_{3} \\
& \left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right)^{2} \mathrm{I}_{2}^{2} \overrightarrow{\mathrm{H}}^{2}= \\
& =\left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{3}^{2}\right) \\
& I_{3}^{2}=\left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{3} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{3} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array} \vec{a}_{3}^{2}\right)\right.
\end{aligned}
$$

Spaltenvertauschung, Übergang zur transponierten Matrix, Faktorvertauschung :

$$
\begin{aligned}
& I_{3}^{2}=\left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{2} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{2} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{3}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{3}^{2}\right) \\
& I_{3}^{2}=\left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{2} & \vec{a}_{2} \vec{a}_{2} \\
\vec{a}_{3} \vec{a}_{1} & \vec{a}_{3} \vec{a}_{2}
\end{array}\right] \vec{a}_{1} \vec{a}_{3}-\left[\begin{array}{ll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{3} \vec{a}_{1} & \vec{a}_{3} \vec{a}_{2}
\end{array}\right] \vec{a}_{2} \vec{a}_{3}+\left[\begin{array}{ll}
\overrightarrow{a_{1}} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2}
\end{array}\right] \vec{a}_{3}^{2}\right)
\end{aligned}
$$

Der rechts stehende Term in Klammern ist die Determinante der Gramschen Matrix, entwickelt nach der 3. Spalte :

$$
I_{3}{ }^{2}=\left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right)^{2}\left[\begin{array}{lll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2} & \vec{a}_{2} \vec{a}_{3} \\
\vec{a}_{3} \vec{a}_{1} & \vec{a}_{3} \vec{a}_{2} & \vec{a}_{3} \vec{a}_{3}
\end{array}\right]
$$

$$
I_{3}{ }^{2}=\left(\frac{1}{3!}\right)^{2}\left[\begin{array}{lll}
\vec{a}_{1} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} & \vec{a}_{1} \vec{a}_{3} \\
\vec{a}_{2} \vec{a}_{1} & \vec{a}_{2} \vec{a}_{2} & \vec{a}_{2} \vec{a}_{3} \\
\vec{a}_{3} \vec{a}_{1} & \vec{a}_{3} \vec{a}_{2} & \vec{a}_{3} \vec{a}_{3}
\end{array}\right]
$$

Das Simplex $S_{r} \subset \mathbb{R}^{n}, \quad r \leq n$
$I_{r}=\frac{1}{r} I_{r-1} \cdot|\vec{H}| \quad$ mit
$\vec{H} \perp \vec{a}_{1}, \ldots, \overrightarrow{a_{r-1}} \quad, \quad \vec{H}=-\left(\alpha_{1} \vec{a}_{1}+\ldots+\alpha_{r-1} \vec{a}_{r-1}\right)+\vec{a}_{r}$
$I_{r}^{2}=\left(\frac{1}{r}\right)^{2} I_{r-1}^{2} \cdot \vec{H}^{2}$
$\vec{H}^{2}=-\left(\alpha_{1} \vec{a}_{1}+\ldots+\alpha_{r-1} \vec{a}_{r-1}\right)^{2}+\vec{a}_{r}^{2}$
Satz des Pythagoras
$\vec{H}^{2}=-\left(\vec{a}_{1}{ }^{2} \alpha_{1}^{2}+\sum_{1 \leq i<j \leq r-1} 2 \vec{a}_{i} \vec{a}_{j} \alpha_{i} \alpha_{j}+\vec{a}_{r-1}{ }^{2} \alpha_{r-1}^{2}\right)+\vec{a}_{r}{ }^{2}$

$$
\overrightarrow{a_{1}} \vec{h}=0 \quad, \quad, \quad a_{r-1} \vec{h}=0
$$

(1)

$$
\begin{equation*}
-\vec{a}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}-\ldots-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \alpha_{\mathrm{r}-1}+\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}}=0 \tag{1}
\end{equation*}
$$

$(r-1) \quad-\vec{a}_{r-1} \vec{a}_{1} \alpha_{1}-\ldots-\vec{a}_{r-1} \vec{a}_{r-1} \alpha_{r-1}+\vec{a}_{1} \vec{a}_{r}=0$

$$
\begin{equation*}
\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{1} \alpha_{1}+\ldots+\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \alpha_{\mathrm{r}-1}=\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}} \tag{1}
\end{equation*}
$$

$(r-1) \quad \vec{a}_{r-1} \vec{a}_{1} \alpha_{1}+\ldots+\vec{a}_{r-1} \vec{a}_{r-1} \alpha_{r-1} \quad=\quad \vec{a}_{r-1} \vec{a}_{r}$

$$
\begin{aligned}
& 1 \leq \mathrm{i} \leq \mathrm{r}-1
\end{aligned}
$$

$$
\begin{equation*}
\vec{a}_{1} \vec{a}_{1} \alpha_{1}+\ldots+\vec{a}_{1} \vec{a}_{r-1} \alpha_{r-1}=\vec{a}_{1} \vec{a}_{r} \quad \mid \cdot \alpha_{1} \tag{1}
\end{equation*}
$$

$(r-1) \quad \vec{a}_{r-1} \vec{a}_{1} \alpha_{1}+\ldots+\vec{a}_{r-1} \vec{a}_{r-1} \alpha_{r-1} \quad=\vec{a}_{r-1} \vec{a}_{r} \quad \mid \cdot \alpha_{r-1}$

$$
\left.\begin{array}{l}
\vec{a}_{1} \vec{a}_{1} \alpha_{1}^{2}+\ldots+\vec{a}_{1} \vec{a}_{r-1} \alpha_{1} \alpha_{r-1}=\vec{a}_{1} \vec{a}_{r} \tag{1}\\
\vdots \\
\vec{a}_{r-1} \vec{a}_{1} \alpha_{1} \alpha_{r-1}+\ldots+\vec{a}_{r-1} \vec{a}_{r-1} \alpha_{r-1}^{2}=\vec{a}_{r-1} \vec{a}_{r}
\end{array}\right]+
$$

$$
\vec{a}_{1}{ }^{2} \alpha_{1}^{2}+\sum_{1 \leq i<j \leq-1} 2 \vec{a}_{\mathrm{a}} \overrightarrow{\mathrm{a}}_{\mathrm{j}} \alpha_{\mathrm{i}} \alpha_{\mathrm{j}}+\overrightarrow{\mathrm{a}}_{\mathrm{r}-1}{ }^{2} \alpha_{\mathrm{r}-1}^{2}=\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{a}}_{\mathrm{r}} \alpha_{1}+\ldots+\overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}} \alpha_{\mathrm{r}-1}
$$

$$
\begin{aligned}
& \vec{H}^{2}=-\left(\vec{a}_{1}{ }^{2} \alpha_{1}^{2}+\sum_{1 \leq i<j \leq r-1} 2 \vec{a}_{i} \vec{a}_{j} \alpha_{i} \alpha_{j}+\vec{a}_{r-1}^{2} \alpha_{r-1}^{2}\right)+\vec{a}_{r}^{2} \\
& \vec{H}^{2}=-\left(\vec{a}_{1} \vec{a}_{r} \alpha_{1}+\ldots+\vec{a}_{r-1} \vec{a}_{r} \alpha_{r-1}\right)+\vec{a}_{r}^{2} \\
& \vec{H}^{2}=-\vec{a}_{1} \vec{a}_{r} \alpha_{1}-\ldots-\vec{a}_{r-1} \vec{a}_{r} \alpha_{r-1}+\vec{a}_{r}^{2} \\
& \vec{H}^{2}=\sum_{i=1}^{r-1}-\vec{a}_{i} \vec{a}_{r} \alpha_{i}+\vec{a}_{r}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{r}\right)^{2}\left(\frac{1}{(r-1)}\right)^{2} \mathrm{I}_{\mathrm{r}-1}{ }^{2} \overrightarrow{\mathrm{~h}}^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& I_{r}^{2}=\left(\frac{1}{r!}\right)^{2} \left\lvert\, \sum_{i=1}^{r-1}-\left[\begin{array}{llllllll}
\cdot & \cdot & \overrightarrow{a_{1}} \vec{a}_{r} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \vec{a}_{i} \vec{a}_{r} \\
\cdot & \cdot & \vec{a}_{r-1} \vec{a}_{r} & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{llllllll}
\overrightarrow{a_{1}} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{1} & \vec{a}_{r-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\vec{a}_{r-1} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & a_{r-1} & \vec{a}_{r-1}
\end{array}\right] \vec{a}_{r} \vec{a}_{r}\right.
\end{aligned}
$$

Jetzt muss man wieder Umformungen vornehmen, nämlich Spaltenvertauschung, Übergang zur transponierten Matrix und Faktorvertauschung:

In der Matrix sei die r-1 -te Spalte modifiziert, und die Spaltennummerierung ist gegeben durch $1, \ldots, r-2, r$.
$-\left[\begin{array}{ccccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \vec{a}_{r-1} \\ \vec{a}_{r}\end{array}\right] \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}}$

Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt, die Zeile mit der Nummer r-1 fehlt:
$-\left[\begin{array}{lllllll}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vec{a}_{\mathrm{r}-2} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{\mathrm{r}-2} \vec{a}_{\mathrm{r}-1} \\ \overrightarrow{\mathrm{a}}_{\mathrm{r}} & \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vec{a}_{\mathrm{r}} & \overrightarrow{\mathrm{a}}_{\mathrm{r}-1}\end{array}\right] \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \overrightarrow{\mathrm{a}}_{\mathrm{r}}$

In der Matrix sei die r-2 -te Spalte modifiziert, und die Spaltennummerierung ist gegeben durch $1, \ldots . r-3, r, r-1$.

$$
-\left[\begin{array}{llllllll}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{1} \vec{a}_{\mathrm{r}} & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} & \overrightarrow{\mathrm{a}}_{\mathrm{r}} \\
& \cdot & \cdot
\end{array} \overrightarrow{\mathrm{a}}_{\mathrm{r}}\right.
$$

Die Spaltenvertauschung erzeugt die Vorzeichenänderung und die Spaltennummerierung

1 , ...r-3, r-1, r. Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt die Zeile mit der Nummer r-2 fehlt:
$\left[\begin{array}{lllllll}\cdot & & \cdot & \cdot & \cdot & \cdot & \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vec{a}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \\ \overrightarrow{\mathrm{a}}_{\mathrm{r}} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{\mathrm{r}} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1}\end{array}\right] \overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{\mathrm{r}}$

In der Matrix sei die r-3 -te Spalte modifiziert, und die Spaltennummerierung ist gegeben durch 1 , . . r-4, r, r-2 , r-1.

$$
-\left[\begin{array}{cccccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{1} \vec{a}_{\mathrm{r}} & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{\mathrm{r}-3} \overrightarrow{\mathrm{a}}_{\mathrm{r}} & \cdot & \cdot
\end{array}\right] \overrightarrow{\mathrm{a}}_{\mathrm{r}}
$$

Die 2-fache Spaltenvertauschung erzeugt keine Vorzeichenänderung und die Spaltennummerierung ist $1, \ldots \mathrm{r}-4, \mathrm{r}-2, \mathrm{r}-1, \mathrm{r}$. Die Transponierung und die Faktorvertauschung erzeugt die gleiche Zeilennummerierung, das heißt die Zeile mit der Nummer r-3 fehlt:

$$
-\left[\begin{array}{lllllll}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\overrightarrow{\mathrm{a}}_{\mathrm{r}-4} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-4} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \\
\overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \overrightarrow{\mathrm{a}}_{\mathrm{r}-2} \overrightarrow{\mathrm{a}}_{\mathrm{r}-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array} \overrightarrow{\mathrm{a}}_{\mathrm{r}-3} \overrightarrow{\mathrm{a}}_{\mathrm{r}}\right.
$$

Denkt man sich diesen Prozess fortgesetzt , erhält man auf der rechten Seite der Gleichung
gerade die Determinante der Gramschen Matrix entwickelt nach der r-ten Spalte, also ist

Das Simplex $S_{n} \subset \mathbb{R}^{n}$

$$
I_{n}=\frac{1}{n!}\left|\left[\vec{a}_{1} \cdot \cdots \cdot \cdot \vec{a}_{n}\right]\right|
$$

Betrag der Determinante der aufspannenden Vektoren dividiert durch n !

$$
\begin{aligned}
& I_{n}{ }^{2}=\left(\frac{1}{n!}\right)^{2}\left[\begin{array}{lllllll}
\vec{a}_{1} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\vec{a}_{n} \vec{a}_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \vec{a}_{n} \vec{a}_{n}
\end{array}\right] \\
& \left.I_{n}{ }^{2}=\left(\frac{1}{n!}\right)^{2}\left[\begin{array}{l}
\overrightarrow{\vec{a}_{1}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\vec{a}_{1}
\end{array}\right)\left(\begin{array}{lllll}
\vec{a}_{1} & \cdots & \cdots & & \vec{a}_{n}
\end{array}\right)\right] \\
& I_{n}{ }^{2}=\left(\frac{1}{n!}\right)^{2}\left[\left(\vec{a}_{1} \ldots \ldots . \vec{a}_{n}\right)^{\top}\left(\vec{a}_{1} \ldots \ldots . \vec{a}_{n}\right)\right] \\
& I_{n}{ }^{2}=\left(\frac{1}{n!}\right)^{2}\left[\left(\vec{a}_{1} \cdots \cdots \cdot \vec{a}_{n}\right)^{\top}\right]\left[\vec{a}_{1} \cdots \cdots \cdot \vec{a}_{n}\right] \\
& I_{n}{ }^{2}=\left(\frac{1}{n!}\right)^{2}\left[\vec{a}_{1} \cdots \cdots \cdot \vec{a}_{n}\right]\left[\vec{a}_{1} \cdots \cdots \cdot \vec{a}_{n}\right] \\
& I_{n}{ }^{2}=\left(\frac{1}{n!}\right)^{2}\left[\vec{a}_{1} \cdots \cdots \cdot \vec{a}_{n}\right]^{2}
\end{aligned}
$$

